X-ray absorption fine structure (EXAFS) and X-ray absorption near-edge structure (XANES) techniques at both Fe and Co K-edges were used to investigate the formation of CoFe2O4 nanoparticles embedded in a silica aerogel matrix as a function of calcination temperature and CoFe2O4 content. In particular, nanocomposite aerogels containing relative CoFe2O4 amounts of 5 and 10 wt % and calcined at 450, 750, and 900 degrees C were studied. The evolution of the nanophase with calcination temperatures depends on the composition. In the sample containing 10 wt % of nanophase, results indicate that CoFe2O4 nanocrystals were formed after calcination at 750 degrees C, whereas in the sample containing 5 wt % of nanophase, they were obtained only after calcination at 900 degrees C. Quantitative determination of the distribution of the iron and cobalt phase in the octahedral and tetrahedral sites of the spinel structure shows that cobalt ferrite prepared by sol-gel has a partially inverted spinel structure with a degree of inversion around 0.70.

An X-ray Absorption Investigation on the formation of cobalt ferrite nanoparticles in aerogel silica matrix

NAVARRA, GABRIELE;CASULA, MARIA FRANCESCA;LOCHE, DANILO;CORRIAS, ANNA
2007-01-01

Abstract

X-ray absorption fine structure (EXAFS) and X-ray absorption near-edge structure (XANES) techniques at both Fe and Co K-edges were used to investigate the formation of CoFe2O4 nanoparticles embedded in a silica aerogel matrix as a function of calcination temperature and CoFe2O4 content. In particular, nanocomposite aerogels containing relative CoFe2O4 amounts of 5 and 10 wt % and calcined at 450, 750, and 900 degrees C were studied. The evolution of the nanophase with calcination temperatures depends on the composition. In the sample containing 10 wt % of nanophase, results indicate that CoFe2O4 nanocrystals were formed after calcination at 750 degrees C, whereas in the sample containing 5 wt % of nanophase, they were obtained only after calcination at 900 degrees C. Quantitative determination of the distribution of the iron and cobalt phase in the octahedral and tetrahedral sites of the spinel structure shows that cobalt ferrite prepared by sol-gel has a partially inverted spinel structure with a degree of inversion around 0.70.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/98702
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 56
  • ???jsp.display-item.citation.isi??? 53
social impact