1H NMR spectroscopy was used to investigate changes in the low molecular weight metabolic profile of raw mullet (Mugil spp.) roes during frozen storage and upon processing. NMR data were analysed by Principal Component Analyses (PCA). In the model constructed using frozen roes, no statistical significant metabolic modifications were observed in the first six months of storage, while choline derivatives, dimethylamine, lactate, and most of the free amino acids were identified as changing with statistical significance (p < 0.05) in response to frozen storage time of twelve months. The PCA model comparing the metabolic profiles of roes before and after processing showed that the major modifications occurring upon manufacturing were the increase of the choline derivative compounds, uracil, and free amino acids, and a large decrease of taurine, glucose, lactate, and creatine/phosphocreatine. All of the above mentioned modifications reflect the occurrence of chemical/biochemical reactions arising from degradation processes such as lipolysis and proteolysis.
Analysing the effects of frozen storage and processing on the metabolite profile of raw mullet roes using 1H NMR spectroscopy
Piras C;SCANO, PAOLA;LOCCI, EMANUELA;CESARE MARINCOLA, FLAMINIA
2014-01-01
Abstract
1H NMR spectroscopy was used to investigate changes in the low molecular weight metabolic profile of raw mullet (Mugil spp.) roes during frozen storage and upon processing. NMR data were analysed by Principal Component Analyses (PCA). In the model constructed using frozen roes, no statistical significant metabolic modifications were observed in the first six months of storage, while choline derivatives, dimethylamine, lactate, and most of the free amino acids were identified as changing with statistical significance (p < 0.05) in response to frozen storage time of twelve months. The PCA model comparing the metabolic profiles of roes before and after processing showed that the major modifications occurring upon manufacturing were the increase of the choline derivative compounds, uracil, and free amino acids, and a large decrease of taurine, glucose, lactate, and creatine/phosphocreatine. All of the above mentioned modifications reflect the occurrence of chemical/biochemical reactions arising from degradation processes such as lipolysis and proteolysis.File | Dimensione | Formato | |
---|---|---|---|
Piras_FoodChem14.pdf
Solo gestori archivio
Tipologia:
versione editoriale (VoR)
Dimensione
1.34 MB
Formato
Adobe PDF
|
1.34 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.