This study was aimed to characterize the microstructure and the performance of gelatin microspheres (GMs) cross-linked by two different cross-linkers viz. d-glucose and glutaraldehyde. New formulations were obtained, suspending the GMs in a thermoreversible Pluronic F127 (PF127) liquid-crystalline gel. Lysozyme was used as a model biomacromolecular drug to evaluate release features. Both types of cross-linked GMs were prepared by thermal gelation method. The lysozyme-loaded microspheres were characterized by scanning electron microscopy (SEM) for size distribution, shape, and surface texture. SEM revealed that both types of lysozyme-loaded GMs were spherical in shape and that the surface of glutaraldehyde cross-linked GMs was smoother than that of the glucose cross-linked GMs. The degree of cross-linking of microspheres was investigated using ATR-FTIR technique. The prepared GMs were suspended in 20% w/v aqueous PF127 gel for which the usual sol-gel transition temperature of 22 °C did not change in the presence of GMs, as indicated by rheological measurements. SAXS study of the PF127 gel confirmed the occurrence of a discrete cubic liquid-crystalline phase of the Fm3m type whose lattice parameter slightly decreased as a result of GMs addition. The in vitro release of lysozyme from both types of cross-linked GMs was successfully controlled when they were suspended in PF127 gel, thus suggesting the potential use of this new combined formulation as a drug-depot system.
In Vitro Release of Lysozyme from Gelatin Microspheres: Effect of Cross-linking Agents and Thermoreversible Gel as Suspending Medium
LAMPIS, SANDRINA;CONTI, GABRIELE;CADDEO, CARLA;MURGIA, SERGIO;FADDA, ANNA MARIA;MONDUZZI, MAURA
2011-01-01
Abstract
This study was aimed to characterize the microstructure and the performance of gelatin microspheres (GMs) cross-linked by two different cross-linkers viz. d-glucose and glutaraldehyde. New formulations were obtained, suspending the GMs in a thermoreversible Pluronic F127 (PF127) liquid-crystalline gel. Lysozyme was used as a model biomacromolecular drug to evaluate release features. Both types of cross-linked GMs were prepared by thermal gelation method. The lysozyme-loaded microspheres were characterized by scanning electron microscopy (SEM) for size distribution, shape, and surface texture. SEM revealed that both types of lysozyme-loaded GMs were spherical in shape and that the surface of glutaraldehyde cross-linked GMs was smoother than that of the glucose cross-linked GMs. The degree of cross-linking of microspheres was investigated using ATR-FTIR technique. The prepared GMs were suspended in 20% w/v aqueous PF127 gel for which the usual sol-gel transition temperature of 22 °C did not change in the presence of GMs, as indicated by rheological measurements. SAXS study of the PF127 gel confirmed the occurrence of a discrete cubic liquid-crystalline phase of the Fm3m type whose lattice parameter slightly decreased as a result of GMs addition. The in vitro release of lysozyme from both types of cross-linked GMs was successfully controlled when they were suspended in PF127 gel, thus suggesting the potential use of this new combined formulation as a drug-depot system.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.