Efflux pumps of the Resistance Nodulation Division (RND) superfamily play a major role in the intrinsic and acquired resistance of Gram-negative pathogens to antibiotics. Moreover, they are largely responsible for multi-drug resistance (MDR) phenomena in these bacteria. The last decade has seen a sharp increase in the number of experimental and computational studies aimed at understanding their functional mechanisms. Most of these studies focused on the RND drug/proton antiporter AcrB, part of the AcrAB-TolC efflux pump actively recognizing and expelling noxious agents from the interior of bacteria. These studies have been focused on the dynamical interactions between AcrB and its substrates and inhibitors, on the details of the proton translocation mechanisms, and on the way AcrB assembles with protein partners to build up a functional pump. In this review we summarize these advances focusing on the role of AcrB.

RND efflux pumps: structural information translated into function and inhibition mechanisms

RUGGERONE, PAOLO;VARGIU, ATTILIO VITTORIO
2013-01-01

Abstract

Efflux pumps of the Resistance Nodulation Division (RND) superfamily play a major role in the intrinsic and acquired resistance of Gram-negative pathogens to antibiotics. Moreover, they are largely responsible for multi-drug resistance (MDR) phenomena in these bacteria. The last decade has seen a sharp increase in the number of experimental and computational studies aimed at understanding their functional mechanisms. Most of these studies focused on the RND drug/proton antiporter AcrB, part of the AcrAB-TolC efflux pump actively recognizing and expelling noxious agents from the interior of bacteria. These studies have been focused on the dynamical interactions between AcrB and its substrates and inhibitors, on the details of the proton translocation mechanisms, and on the way AcrB assembles with protein partners to build up a functional pump. In this review we summarize these advances focusing on the role of AcrB.
2013
Bacterial efflux pumps; Bacterial resistance; Structure
File in questo prodotto:
File Dimensione Formato  
RND_Efflux_CTMC_2013.pdf

Solo gestori archivio

Descrizione: Articolo principale
Tipologia: versione editoriale
Dimensione 1.88 MB
Formato Adobe PDF
1.88 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/99363
Citazioni
  • ???jsp.display-item.citation.pmc??? 61
  • Scopus 110
  • ???jsp.display-item.citation.isi??? 103
social impact