Changes in the expression of subunits of the GABA type A (GABA(A)) receptor are implicated in the development of ethanol tolerance and dependence as well as in the central hyperexcitability associated with ethanol withdrawal. The impact of such changes on GABA(A) receptor function and pharmacological sensitivity was investigated with cultured rat hippocampal neurons exposed to ethanol for 5 d and then subjected to ethanol withdrawal. Both ethanol treatment and withdrawal were associated with a marked decrease in the maximal density of GABA-evoked Cl- currents, whereas the potency of GABA was unaffected. Ethanol exposure also reduced the modulatory efficacy of the benzodiazepine receptor agonists lorazepam, zolpidem, and zaleplon as well as that of the inverse agonists Ro 15-4513 and FG 7142, effects that were associated with a reduced abundance of mRNAs encoding the receptor subunits alpha1, alpha3, gamma2L, and gamma2S. Ethanol withdrawal restored the efficacy of lorazepam, but not that of low concentrations of zolpidem or zaleplon, to control values. Flumazenil, which was ineffective in control neurons, and Ro 15-4513 each potentiated the GABA response after ethanol withdrawal. These effects of withdrawal were accompanied by upregulation of the alpha2, alpha3, and alpha4 subunit mRNAs as well as of the alpha4 protein. Diazepam or gamma-hydroxybutyrate, but not baclofen, prevented the changes in both GABA(A) receptor pharmacology and subunit mRNA levels induced by ethanol withdrawal. Changes in GABA(A) receptor gene expression induced by prolonged exposure to and withdrawal of ethanol are thus associated with altered GABA(A) receptor function and pharmacological sensitivity.

Changes in GABA(A) receptor gene expression associated with selective alterations in receptor function and pharmacology after ethanol withdrawal

SANNA, ENRICO;TALANI, GIUSEPPE;TRANQUILLI, STEFANIA;SPIGA, SATURNINO;FOLLESA, PAOLO;
2003-01-01

Abstract

Changes in the expression of subunits of the GABA type A (GABA(A)) receptor are implicated in the development of ethanol tolerance and dependence as well as in the central hyperexcitability associated with ethanol withdrawal. The impact of such changes on GABA(A) receptor function and pharmacological sensitivity was investigated with cultured rat hippocampal neurons exposed to ethanol for 5 d and then subjected to ethanol withdrawal. Both ethanol treatment and withdrawal were associated with a marked decrease in the maximal density of GABA-evoked Cl- currents, whereas the potency of GABA was unaffected. Ethanol exposure also reduced the modulatory efficacy of the benzodiazepine receptor agonists lorazepam, zolpidem, and zaleplon as well as that of the inverse agonists Ro 15-4513 and FG 7142, effects that were associated with a reduced abundance of mRNAs encoding the receptor subunits alpha1, alpha3, gamma2L, and gamma2S. Ethanol withdrawal restored the efficacy of lorazepam, but not that of low concentrations of zolpidem or zaleplon, to control values. Flumazenil, which was ineffective in control neurons, and Ro 15-4513 each potentiated the GABA response after ethanol withdrawal. These effects of withdrawal were accompanied by upregulation of the alpha2, alpha3, and alpha4 subunit mRNAs as well as of the alpha4 protein. Diazepam or gamma-hydroxybutyrate, but not baclofen, prevented the changes in both GABA(A) receptor pharmacology and subunit mRNA levels induced by ethanol withdrawal. Changes in GABA(A) receptor gene expression induced by prolonged exposure to and withdrawal of ethanol are thus associated with altered GABA(A) receptor function and pharmacological sensitivity.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/99453
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 40
  • Scopus 115
  • ???jsp.display-item.citation.isi??? 106
social impact