The Roman high- (RHA) and low-Avoidance (RLA) rats were selectively bred for rapid vs poor acquisition of two-way active avoidance behavior. These lines differ in numerous behavioral traits, with RLA rats being more fearful/anxious than RHA rats, and the latter being novelty-seekers and showing larger intake of, and preference for, addictive substances including ethanol (ETH). Moreover, several differences in central dopaminergic, serotonergic, and GABAergic functions have been reported in these two lines. Since those neural systems are involved in the regulation of ETH consumption, it was considered of interest to investigate: 1) the differences in ETH intake and preference between RHA and RLA rats, 2) the effects of ETH on DA release in the shell of the nucleus accumbens (AcbSh) using brain microdialysis. ETH solutions of increasing concentrations (2%- 10%) were presented on alternate days in a free choice with water. To examine ETH intake and preference stability, animals were subsequently switched to daily presentations of 10% ETH for 10 consecutive days. RHA rats consumed significantly larger amounts of ETH and displayed higher ETH preference than did RLA rats throughout the acquisition and maintenance phases. Following chronic exposure to ETH the animals were habituated to a restricted access to ETH schedule (2% ETH, 2 h per day × 4 days) before surgical implantation of a dialysis probe in the AcbSh. Under these experimental conditions, voluntary ETH intake (2%, 1 h, p.o.) produced a significant increase in accumbal DA output in RHA rats but not in their RLA counterparts. Finally, the i.p. administration of ETH (0.25 g/kg) to naïve Roman rats produced a significant increment in accumbal DA output only in RHA rats. These results indicate that the mesolimbic dopaminergic system of RHA rats is more responsive to the effects of ETH than that of RLA rats.
Differential effects of voluntary ethanol consumption on dopamine output in the nucleus accumbens shell of Roman high- and low-Avoidance rats: A behavioral and brain microdialysis study
CORDA, MARIA GIUSEPPA;PILUDU, MARIA ANTONIETTA;GIORGI, OSVALDO
2014-01-01
Abstract
The Roman high- (RHA) and low-Avoidance (RLA) rats were selectively bred for rapid vs poor acquisition of two-way active avoidance behavior. These lines differ in numerous behavioral traits, with RLA rats being more fearful/anxious than RHA rats, and the latter being novelty-seekers and showing larger intake of, and preference for, addictive substances including ethanol (ETH). Moreover, several differences in central dopaminergic, serotonergic, and GABAergic functions have been reported in these two lines. Since those neural systems are involved in the regulation of ETH consumption, it was considered of interest to investigate: 1) the differences in ETH intake and preference between RHA and RLA rats, 2) the effects of ETH on DA release in the shell of the nucleus accumbens (AcbSh) using brain microdialysis. ETH solutions of increasing concentrations (2%- 10%) were presented on alternate days in a free choice with water. To examine ETH intake and preference stability, animals were subsequently switched to daily presentations of 10% ETH for 10 consecutive days. RHA rats consumed significantly larger amounts of ETH and displayed higher ETH preference than did RLA rats throughout the acquisition and maintenance phases. Following chronic exposure to ETH the animals were habituated to a restricted access to ETH schedule (2% ETH, 2 h per day × 4 days) before surgical implantation of a dialysis probe in the AcbSh. Under these experimental conditions, voluntary ETH intake (2%, 1 h, p.o.) produced a significant increase in accumbal DA output in RHA rats but not in their RLA counterparts. Finally, the i.p. administration of ETH (0.25 g/kg) to naïve Roman rats produced a significant increment in accumbal DA output only in RHA rats. These results indicate that the mesolimbic dopaminergic system of RHA rats is more responsive to the effects of ETH than that of RLA rats.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.