We investigate boundary blow-up solutions of the equation \Delta u = f(u) in a bounded smooth domain ­\Omega \subset R^N: Under the condition that f(t) grows exponentially as t goes to infinity we show how the mean curvature of the boundary \partial \Omega appears in the asymptotic expansion of the solution u(x) in terms of the distance of x from the boundary \partial \Omega.

Estimates for boundary blow-up solutions of semilinear elliptic equations

ANEDDA, CLAUDIA;
2008-01-01

Abstract

We investigate boundary blow-up solutions of the equation \Delta u = f(u) in a bounded smooth domain ­\Omega \subset R^N: Under the condition that f(t) grows exponentially as t goes to infinity we show how the mean curvature of the boundary \partial \Omega appears in the asymptotic expansion of the solution u(x) in terms of the distance of x from the boundary \partial \Omega.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/99825
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact