In the restructured electricity industry, the engineering aspects of planning need to be reformulated even though the goal to attain remains substantially the same, requiring various objectives to be simultaneously accomplished to achieve the optimality of the power system development and operation. In many cases, these objectives contradict each other and cannot be handled by conventional single optimization techniques. In this paper, a multiobjective formulation for the siting and sizing of DG resources into existing distribution networks is proposed. The methodology adopted permits the planner to decide the best compromise between cost of network upgrading, cost of power losses, cost of energy not supplied, and cost of energy required by the served customers. The implemented technique is based on a genetic algorithm and an ε-constrained method that allows obtaining a set of noninferior solutions. Application examples are presented to demonstrate the effectiveness of the proposed procedure.

A Multi-Objective Evolutionary Algorithm for the Sizing and Siting of Distributed Generation

CELLI, GIANNI;GHIANI, EMILIO;MOCCI, SUSANNA;PILO, FABRIZIO GIULIO LUCA
2005-01-01

Abstract

In the restructured electricity industry, the engineering aspects of planning need to be reformulated even though the goal to attain remains substantially the same, requiring various objectives to be simultaneously accomplished to achieve the optimality of the power system development and operation. In many cases, these objectives contradict each other and cannot be handled by conventional single optimization techniques. In this paper, a multiobjective formulation for the siting and sizing of DG resources into existing distribution networks is proposed. The methodology adopted permits the planner to decide the best compromise between cost of network upgrading, cost of power losses, cost of energy not supplied, and cost of energy required by the served customers. The implemented technique is based on a genetic algorithm and an ε-constrained method that allows obtaining a set of noninferior solutions. Application examples are presented to demonstrate the effectiveness of the proposed procedure.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/102165
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 648
  • ???jsp.display-item.citation.isi??? 467
social impact