In this article, we investigate the balanced condition and the existence of an Engliš expansion for the Taub-NUT metrics on ℂM 2. Our first result shows that a Taub-NUT metric on ℂM 2 is never balanced unless it is the flat metric. The second one shows that an Engliš expansion of the Rawnsley's function associated to a Taub-NUT metric always exists, while the coefficient a 3 of the expansion vanishes if and only if the Taub-NUT metric is indeed the flat one.

Some remarks on the Kähler geometry of the Taub-NUT metrics

LOI A;ZUDDAS F
2012-01-01

Abstract

In this article, we investigate the balanced condition and the existence of an Engliš expansion for the Taub-NUT metrics on ℂM 2. Our first result shows that a Taub-NUT metric on ℂM 2 is never balanced unless it is the flat metric. The second one shows that an Engliš expansion of the Rawnsley's function associated to a Taub-NUT metric always exists, while the coefficient a 3 of the expansion vanishes if and only if the Taub-NUT metric is indeed the flat one.
File in questo prodotto:
File Dimensione Formato  
rivista.pdf

Solo gestori archivio

Tipologia: versione editoriale (VoR)
Dimensione 1.36 MB
Formato Adobe PDF
1.36 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/102451
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 17
social impact