There is currently substantial evidence that Cannabis sativa derivates act on brain reward in a way very similar to other drugs of abuse and exert numerous pharmacological effects through their interaction with various neurotransmitters and neuromodulators. Among them, the endogenous opioids seem to play an important role in modulating the addictive properties of cannabinoids. Given the plethora of research activity on such a topic, this brief review is necessarily focused on cannabinoid/opioid interaction in reward-related events and restricted to the recent literature. Recent findings from our and other laboratories concerning cannabinoid reinforcing effects as revealed by behavioral animal models of addiction are here summarized. Evidence is then provided demonstrating a functional cross-talk between the cannabinoid and opioid systems in the mutual modulation of the addictive behavior; accordingly, very recent data from transgenic mice lacking either the cannabinoid CB1 or opioid receptors are also presented. Finally, the role of the endogenous cannabinoid system in relapse to opioids is investigated by means of extinction/reinstatement animal models following a period, even prolonged, of drug abstinence. Altogether, the reviewed studies provided a better understanding of the neurobiological mechanisms involved in cannabinoid actions and revealed a bidirectional interaction between the endogenous cannabinoid and opioid systems in reward that extends to central mechanisms underlying relapsing phenomena. Challenges for the future involve elucidation of the neuroanatomical substrates of cannabinoids action, even in light of the therapeutic potential of these compounds.

Cannabinoids and reward: Interactions with the opioid system

COSSU, GREGORIO;SPANO, MARIA SABRINA;FADDA, PAOLA;SCHERMA, MARIA;FRATTA, WALTER
2004-01-01

Abstract

There is currently substantial evidence that Cannabis sativa derivates act on brain reward in a way very similar to other drugs of abuse and exert numerous pharmacological effects through their interaction with various neurotransmitters and neuromodulators. Among them, the endogenous opioids seem to play an important role in modulating the addictive properties of cannabinoids. Given the plethora of research activity on such a topic, this brief review is necessarily focused on cannabinoid/opioid interaction in reward-related events and restricted to the recent literature. Recent findings from our and other laboratories concerning cannabinoid reinforcing effects as revealed by behavioral animal models of addiction are here summarized. Evidence is then provided demonstrating a functional cross-talk between the cannabinoid and opioid systems in the mutual modulation of the addictive behavior; accordingly, very recent data from transgenic mice lacking either the cannabinoid CB1 or opioid receptors are also presented. Finally, the role of the endogenous cannabinoid system in relapse to opioids is investigated by means of extinction/reinstatement animal models following a period, even prolonged, of drug abstinence. Altogether, the reviewed studies provided a better understanding of the neurobiological mechanisms involved in cannabinoid actions and revealed a bidirectional interaction between the endogenous cannabinoid and opioid systems in reward that extends to central mechanisms underlying relapsing phenomena. Challenges for the future involve elucidation of the neuroanatomical substrates of cannabinoids action, even in light of the therapeutic potential of these compounds.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/104259
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact