The growing complexity of digital architectures strongly impacts on their verification phase, which becomes critical. In fact, without giving up cycle-accuracy, it seems there are not at the state-of-the-art fast frameworks allowing multi-parametric simulations at a fine granularity level for accurate verification and design space exploration purposes. In this paper, we propose a parallel, fast and cycle-accurate SystemC simulation framework: SysCgrid. SysCgrid is designed to provide automatic generation and parallel execution of multi-parametric simulations with minimum effort by hardware architects. This framework is conceived to run on a cluster/grid computing infrastructure, exploiting the message passing interface (MPI) to automatically distribute the multi-parametric simulation set over more than one node. The achieved results on a network-on-chip (NoC) architecture verification demonstrate the good SysCgrid scalability, both in case of shared and non-shared memory computing infrastructures, achieving impressive speed up with respect to traditional single-run simulations approaches.
A fast MPI-based parallel framework for cycle-accurate HDL multi-parametric simulations
PANI, DANILO;PALUMBO, FRANCESCA;RAFFO, LUIGI
2010-01-01
Abstract
The growing complexity of digital architectures strongly impacts on their verification phase, which becomes critical. In fact, without giving up cycle-accuracy, it seems there are not at the state-of-the-art fast frameworks allowing multi-parametric simulations at a fine granularity level for accurate verification and design space exploration purposes. In this paper, we propose a parallel, fast and cycle-accurate SystemC simulation framework: SysCgrid. SysCgrid is designed to provide automatic generation and parallel execution of multi-parametric simulations with minimum effort by hardware architects. This framework is conceived to run on a cluster/grid computing infrastructure, exploiting the message passing interface (MPI) to automatically distribute the multi-parametric simulation set over more than one node. The achieved results on a network-on-chip (NoC) architecture verification demonstrate the good SysCgrid scalability, both in case of shared and non-shared memory computing infrastructures, achieving impressive speed up with respect to traditional single-run simulations approaches.File | Dimensione | Formato | |
---|---|---|---|
f114217581063912.pdf
Solo gestori archivio
Dimensione
632.1 kB
Formato
Adobe PDF
|
632.1 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.