On the wave of technology scaling, digital designers are quickly approaching the limits of current technologies. At the same time, deep submicron architectures are becoming more prone to transient errors and permanent faults. Swarm intelligence represents an interesting source of inspiration already used in the past for the design of decentralized-control hardware architectures with intrinsic properties of scalability, adaptability and fault tolerance, with a configuration-free approach. This paper presents the first swarm coprocessor for floating point array processing with native multitasking support. The coprocessor, designed around a nature-inspired processing fabric, has been integrated on a Virtex6 FPGA with a MicroBlaze host processor and preliminarily evaluated on common applications. The performance of the system, joined to its fault tolerance support, reveals the potentialities of the approach opening to architectural improvements and mapping of safety-critical digital signal processing applications.
A nature-inspired adaptive floating-point coprocessing system
SAU, CARLO;PANI, DANILO;PALUMBO, FRANCESCA;RAFFO, LUIGI
2012-01-01
Abstract
On the wave of technology scaling, digital designers are quickly approaching the limits of current technologies. At the same time, deep submicron architectures are becoming more prone to transient errors and permanent faults. Swarm intelligence represents an interesting source of inspiration already used in the past for the design of decentralized-control hardware architectures with intrinsic properties of scalability, adaptability and fault tolerance, with a configuration-free approach. This paper presents the first swarm coprocessor for floating point array processing with native multitasking support. The coprocessor, designed around a nature-inspired processing fabric, has been integrated on a Virtex6 FPGA with a MicroBlaze host processor and preliminarily evaluated on common applications. The performance of the system, joined to its fault tolerance support, reveals the potentialities of the approach opening to architectural improvements and mapping of safety-critical digital signal processing applications.File | Dimensione | Formato | |
---|---|---|---|
06385400.pdf
Solo gestori archivio
Dimensione
189.99 kB
Formato
Adobe PDF
|
189.99 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.