Oxygen-binding to haemocyanin (Hc) is generally an exothermic process, with overall enthalphy of oxygenation varying from species to species. A number of crustacean Hcs showed a null or reduced enthalphy of oxygenation, among others, the anomuran Pagurus bernhardus and Paralithodes camtscaticae possess a completely temperature-independent oxygen-binding in a wide range of temperature and pH. Functional analysis performed on purified native, hexameric and dodecameric Hc forms of the anemone hermit crab Dardanus calidus allowed to calculate the enthalphy of oxygenation values that resulted equal to -36.2, -33.8 and -26.8 kJ/mol, respectively. Thus, the temperature sensitivity of oxygen binding of D. calidus Hc is in contrast with the temperature independence reported for P. bernhardus and P. camtscaticae, suggesting a high Hc functional heterogeneity within Anomura. Functional characterization also evidenced a strong oxygen affinity modulation by protons (DeltalogP(50)/DeltapH = -0.97) and lactate [DeltalogP(50)/Deltalog(lactate) = -0.38], and a significant decrease in cooperativity by physiological concentration of lactate (n(50) from 2.8 to 1.7 at pH 7.5).

Structural and functional characterization of haemocyanin from the anemone hermit crab Dardanus calidus

MANCONI, BARBARA;OLIANAS, ALESSANDRA;MESSANA, IRENE;MURA, MARCO TULLIO;SANNA, MARIA TERESA
2008-01-01

Abstract

Oxygen-binding to haemocyanin (Hc) is generally an exothermic process, with overall enthalphy of oxygenation varying from species to species. A number of crustacean Hcs showed a null or reduced enthalphy of oxygenation, among others, the anomuran Pagurus bernhardus and Paralithodes camtscaticae possess a completely temperature-independent oxygen-binding in a wide range of temperature and pH. Functional analysis performed on purified native, hexameric and dodecameric Hc forms of the anemone hermit crab Dardanus calidus allowed to calculate the enthalphy of oxygenation values that resulted equal to -36.2, -33.8 and -26.8 kJ/mol, respectively. Thus, the temperature sensitivity of oxygen binding of D. calidus Hc is in contrast with the temperature independence reported for P. bernhardus and P. camtscaticae, suggesting a high Hc functional heterogeneity within Anomura. Functional characterization also evidenced a strong oxygen affinity modulation by protons (DeltalogP(50)/DeltapH = -0.97) and lactate [DeltalogP(50)/Deltalog(lactate) = -0.38], and a significant decrease in cooperativity by physiological concentration of lactate (n(50) from 2.8 to 1.7 at pH 7.5).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/107141
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact