This work aimed at finding an innovative vesicle-type formulation able to improve the bioavailability of curcumin upon oral administration. To this purpose, phospholipid, Eudragit® S100 and hyaluronan sodium salt were combined to obtain eudragit-hyaluronan immobilized vesicles using an easy and environmentally-friendly method. For the first time, the two polymers were combined in a system intended for oral delivery, to enhance curcumin stability when facing the harsh environment of the gastrointestinal tract. Four different formulations were prepared, keeping constant the amount of the phospholipid and varying the eudragit-hyaluronan ratio. The freeze-drying of the samples, performed to increase their stability, led to a reduction of vesicle size and a good homogeneity of the systems, after simple rehydration with water. X-ray diffraction study demonstrated that after the freeze-drying process, curcumin remained successfully incorporated within the vesicles. All the vesicles displayed similar features: size ranging from 220 to 287 nm, spherical or oval shape, multilamellar or large unilamellar morphology with a peculiar multicompartment organization involving 1–4 smaller vesicles inside. In vitro studies demonstrated the ability of the combined polymers to protect the vesicles from the harsh conditions of the gastro-intestinal tract (i.e., ionic strength and pH variation), which was confirmed in vivo by the greater deposition of curcumin in the intestinal region, as compared to the free drug in dispersion. This enhanced accumulation of curcumin provided by the eudragit-hyaluronan immobilized vesicles, together with an increase in Caco-2 cell viability exposed to hydrogen peroxide, indicated that vesicles can ensure a local protection against oxidative stress and an increase in its intestinal absorption

Freeze-dried eudragit-hyaluronan multicompartment liposomes to improve the intestinal bioavailability of curcumin

CATALAN LATORRE, ANA;MANCA, MARIA LETIZIA;CADDEO, CARLA;MARONGIU, FRANCESCA;ENNAS, GUIDO;FADDA, ANNA MARIA;MANCONI, MARIA
2016-01-01

Abstract

This work aimed at finding an innovative vesicle-type formulation able to improve the bioavailability of curcumin upon oral administration. To this purpose, phospholipid, Eudragit® S100 and hyaluronan sodium salt were combined to obtain eudragit-hyaluronan immobilized vesicles using an easy and environmentally-friendly method. For the first time, the two polymers were combined in a system intended for oral delivery, to enhance curcumin stability when facing the harsh environment of the gastrointestinal tract. Four different formulations were prepared, keeping constant the amount of the phospholipid and varying the eudragit-hyaluronan ratio. The freeze-drying of the samples, performed to increase their stability, led to a reduction of vesicle size and a good homogeneity of the systems, after simple rehydration with water. X-ray diffraction study demonstrated that after the freeze-drying process, curcumin remained successfully incorporated within the vesicles. All the vesicles displayed similar features: size ranging from 220 to 287 nm, spherical or oval shape, multilamellar or large unilamellar morphology with a peculiar multicompartment organization involving 1–4 smaller vesicles inside. In vitro studies demonstrated the ability of the combined polymers to protect the vesicles from the harsh conditions of the gastro-intestinal tract (i.e., ionic strength and pH variation), which was confirmed in vivo by the greater deposition of curcumin in the intestinal region, as compared to the free drug in dispersion. This enhanced accumulation of curcumin provided by the eudragit-hyaluronan immobilized vesicles, together with an increase in Caco-2 cell viability exposed to hydrogen peroxide, indicated that vesicles can ensure a local protection against oxidative stress and an increase in its intestinal absorption
2016
curcumin; polymer; liposome; antioxidant; intestinal biodistribution
File in questo prodotto:
File Dimensione Formato  
Freeze-dried eudragit-hyaluronan multicompartment liposomes to improve the intestinal bioavailability of curcumin.pdf

Solo gestori archivio

Tipologia: versione editoriale
Dimensione 1.42 MB
Formato Adobe PDF
1.42 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/175340
Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 54
  • ???jsp.display-item.citation.isi??? 50
social impact