NRF2 has been traditionally considered as a tumor suppressor because its cytoprotective functions are deemed to be the main cellular defense mechanism against exogenous and endogenous insults, including xenobiotics and oxidative stress. However, several recent studies demonstrate that hyperactivation of the NRF2 pathway creates an environment that favors the survival of normal as well as malignant cells, protecting them against oxidative stress, chemotherapeutic agents, and radiotherapy. In a rapidly advancing field, this review summarizes some of the known mechanisms by which NRF2 can exert its oncogenic functions, and describes the current status of NRF2 inhibitors, providing a clear rationale for the consideration of NRF2 as a powerful putative therapeutic target in cancer treatment
The dual roles of NRF2 in cancer
COLUMBANO, AMEDEO;
2016-01-01
Abstract
NRF2 has been traditionally considered as a tumor suppressor because its cytoprotective functions are deemed to be the main cellular defense mechanism against exogenous and endogenous insults, including xenobiotics and oxidative stress. However, several recent studies demonstrate that hyperactivation of the NRF2 pathway creates an environment that favors the survival of normal as well as malignant cells, protecting them against oxidative stress, chemotherapeutic agents, and radiotherapy. In a rapidly advancing field, this review summarizes some of the known mechanisms by which NRF2 can exert its oncogenic functions, and describes the current status of NRF2 inhibitors, providing a clear rationale for the consideration of NRF2 as a powerful putative therapeutic target in cancer treatmentFile | Dimensione | Formato | |
---|---|---|---|
Trends Mol Med.pdf
Solo gestori archivio
Descrizione: Pdf
Tipologia:
versione editoriale (VoR)
Dimensione
2.7 MB
Formato
Adobe PDF
|
2.7 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.