β-Thalassemia is caused by reduced (β +) or absent (β 0) synthesis of the β-globin chains of hemoglobin. Three clinical and hematological conditions of increasing severity are recognized: the β-thalassemia carrier state, thalassemia intermedia, and thalassemia major, a severe transfusion-dependent anemia. The severity of disease expression is related mainly to the degree of α-globin chain excess, which precipitates in the red blood cell precursors, causing both mechanic and oxidative damage (ineffective erythropoiesis). Any mechanism that reduces the number of unbound α-globin chains in the red cells may ameliorate the detrimental effects of excess α-globin chains. Factors include the inheritance of mild/silent β-thalassemia mutations, the coinheritance of α-thalassemia alleles, and increased Î 3-globin chain production. The clinical severity of β-thalassemia syndromes is also influenced by genetic factors unlinked to globin genes as well as environmental conditions and management. Transfusions and oral iron chelation therapy have dramatically improved the quality of life for patients with thalassemia major. Previously a rapidly fatal disease in early childhood, β-thalassemia is now a chronic disease with a greater life expectancy. At present, the only definitive cure is bone marrow transplantation. Therapies undergoing investigation are modulators of erythropoiesis and stem cell gene therapy.

β-Thalassemia

ORIGA, RAFFAELLA
2017-01-01

Abstract

β-Thalassemia is caused by reduced (β +) or absent (β 0) synthesis of the β-globin chains of hemoglobin. Three clinical and hematological conditions of increasing severity are recognized: the β-thalassemia carrier state, thalassemia intermedia, and thalassemia major, a severe transfusion-dependent anemia. The severity of disease expression is related mainly to the degree of α-globin chain excess, which precipitates in the red blood cell precursors, causing both mechanic and oxidative damage (ineffective erythropoiesis). Any mechanism that reduces the number of unbound α-globin chains in the red cells may ameliorate the detrimental effects of excess α-globin chains. Factors include the inheritance of mild/silent β-thalassemia mutations, the coinheritance of α-thalassemia alleles, and increased Î 3-globin chain production. The clinical severity of β-thalassemia syndromes is also influenced by genetic factors unlinked to globin genes as well as environmental conditions and management. Transfusions and oral iron chelation therapy have dramatically improved the quality of life for patients with thalassemia major. Previously a rapidly fatal disease in early childhood, β-thalassemia is now a chronic disease with a greater life expectancy. At present, the only definitive cure is bone marrow transplantation. Therapies undergoing investigation are modulators of erythropoiesis and stem cell gene therapy.
File in questo prodotto:
File Dimensione Formato  
2016 Beta thalassemia Review.pdf

Solo gestori archivio

Tipologia: versione post-print (AAM)
Dimensione 1.19 MB
Formato Adobe PDF
1.19 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/191615
Citazioni
  • ???jsp.display-item.citation.pmc??? 147
  • Scopus 291
  • ???jsp.display-item.citation.isi??? 210
social impact