Introduction: The microrganisms of the human oral cavity include more than 700 species or phenotypes of bacteria. Some “diseases of civilization” are strictly correlated to changes in the microbiome following the food revolution that occurred after WWII. For that reason, a precise recognition of the microbiome profile before and after this period should be useful to determine the health-compatible model of icrobiome. The aim of this study was to compare the microbiome profiles (number of total cells, and pathogen types) of dental samples obtained from two distinct groups of children, a 200-year-old retrieved one and a present one. Methods: Two different groups of samples have been studied. The first group was a set of 50 recent subgingival plaque samples obtained from children of age 2-8 years, 14 males and 36 females. They were enrolled by the Department of Dental Disease Prevention (University of Cagliari, in Sardinia, Italy) during standard dental care procedures. None reported periodontal disease and none had been under antibiotic therapy during the previous 6 months. The second group was an old retrieved group that included 24 teeth from 6 different 6- to 8-year-old crania fragments; they were obtained from a 200-year-old charnel-house located in Villaputzu, a city close to Cagliari. Representative periodontal bacteria have been identified by a previously published real-time PCR procedure (Sokransky et al., 1998) in which P. gingivalis and T. forsythia (red complex), A. Original article 2/5 www.jpnim.com Open Access Journal of Pediatric and Neonatal Individualized Medicine • vol. 6 • n. 1 • 2017 Orrù • Contu • Casula • Demontis • Blus • Szmukler-Moncler • Serreli • Maserati • Steri • Fanos • Coghe • Denotti actinomycetemcomitans (green complex) and F. nucleatum (orange complex) were detected. In addition, the title of each pathogen was expressed as a percentage of the total bacteria (biofilm) in the sample. Results and discussion: The profile of periodontal microbiomes, between recent/ancient samples showed a significant difference relative to Sokransky’s red complex bacteria (p < 0.05). In all analyzed periodontal strains, the pathogenic bacteria P. gingivalis and T. forsythia showed the highest title in the recent group. Conclusions: Our hypothesis is that the transfer of “commensal-pathogen” as an absolute number on the oral biofilm might be linked to the distinct alimentary habits of the two populations. Some diet rich in reducing agents, such as processed meat-based foods, might be able to increase the average number of pathogen anaerobic bacteria in the oral microbiota. The outcome would be an increase of the oral systemic diseases reported with these pathogens. Our data suggest that the ancient Sardinian population was able to control the pathogen oral anaerobic biofilm by some diet rich in antioxidant compounds. Further investigations are required to focus on the genetic profile and the health status of this ancient population but it appears that molecular microbiology might be considered as the “time machine” in oral biology.

Periodontal microbiota of Sardinian children: comparing 200-year-old samples to present-day ones

ORRU, GERMANO;SERRELI, GABRIELE;FANOS, VASSILIOS;DENOTTI, GLORIA
2017

Abstract

Introduction: The microrganisms of the human oral cavity include more than 700 species or phenotypes of bacteria. Some “diseases of civilization” are strictly correlated to changes in the microbiome following the food revolution that occurred after WWII. For that reason, a precise recognition of the microbiome profile before and after this period should be useful to determine the health-compatible model of icrobiome. The aim of this study was to compare the microbiome profiles (number of total cells, and pathogen types) of dental samples obtained from two distinct groups of children, a 200-year-old retrieved one and a present one. Methods: Two different groups of samples have been studied. The first group was a set of 50 recent subgingival plaque samples obtained from children of age 2-8 years, 14 males and 36 females. They were enrolled by the Department of Dental Disease Prevention (University of Cagliari, in Sardinia, Italy) during standard dental care procedures. None reported periodontal disease and none had been under antibiotic therapy during the previous 6 months. The second group was an old retrieved group that included 24 teeth from 6 different 6- to 8-year-old crania fragments; they were obtained from a 200-year-old charnel-house located in Villaputzu, a city close to Cagliari. Representative periodontal bacteria have been identified by a previously published real-time PCR procedure (Sokransky et al., 1998) in which P. gingivalis and T. forsythia (red complex), A. Original article 2/5 www.jpnim.com Open Access Journal of Pediatric and Neonatal Individualized Medicine • vol. 6 • n. 1 • 2017 Orrù • Contu • Casula • Demontis • Blus • Szmukler-Moncler • Serreli • Maserati • Steri • Fanos • Coghe • Denotti actinomycetemcomitans (green complex) and F. nucleatum (orange complex) were detected. In addition, the title of each pathogen was expressed as a percentage of the total bacteria (biofilm) in the sample. Results and discussion: The profile of periodontal microbiomes, between recent/ancient samples showed a significant difference relative to Sokransky’s red complex bacteria (p < 0.05). In all analyzed periodontal strains, the pathogenic bacteria P. gingivalis and T. forsythia showed the highest title in the recent group. Conclusions: Our hypothesis is that the transfer of “commensal-pathogen” as an absolute number on the oral biofilm might be linked to the distinct alimentary habits of the two populations. Some diet rich in reducing agents, such as processed meat-based foods, might be able to increase the average number of pathogen anaerobic bacteria in the oral microbiota. The outcome would be an increase of the oral systemic diseases reported with these pathogens. Our data suggest that the ancient Sardinian population was able to control the pathogen oral anaerobic biofilm by some diet rich in antioxidant compounds. Further investigations are required to focus on the genetic profile and the health status of this ancient population but it appears that molecular microbiology might be considered as the “time machine” in oral biology.
Subgingival plaque, microbiota, children, ancient population.
File in questo prodotto:
File Dimensione Formato  
Orru' JPNIM 2017.pdf

accesso aperto

Tipologia: versione editoriale
Dimensione 804.27 kB
Formato Adobe PDF
804.27 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11584/207518
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact