We present a study of 600 Java software networks with the aim of characterizing the relationship among their defectiveness and community metrics. We analyze the community structure of such networks, defined as their topological division into subnetworks of densely connected nodes. A high density of connections represents a higher level of cooperation between classes, so a well-defined division in communities could indicate that the software system has been designed in a modular fashion and all its functionalities are well separated. We show how the community structure can be an indicator of well-written, high quality code by retrieving the communities of the analyzed systems and by ranking their division in communities through the built-in metric called modularity. We found that the software systems with highest modularity possess the majority of bugs, and tested whether this result is related to some confounding effect. We found two power laws relating the maximum defect density with two different metrics: the number of detected communities inside a software network and the clustering coefficient. We finally found a linear correlation between clustering coefficient and number of communities. Our results can be used to make predictive hypotheses about software defectiveness of future releases of the analyzed systems.
Software quality and community structure in Java software networks
CONCAS, GIULIO;MARCHESI, MICHELE;MONNI, CRISTINA;ORRU', MATTEO;TONELLI, ROBERTO
2017-01-01
Abstract
We present a study of 600 Java software networks with the aim of characterizing the relationship among their defectiveness and community metrics. We analyze the community structure of such networks, defined as their topological division into subnetworks of densely connected nodes. A high density of connections represents a higher level of cooperation between classes, so a well-defined division in communities could indicate that the software system has been designed in a modular fashion and all its functionalities are well separated. We show how the community structure can be an indicator of well-written, high quality code by retrieving the communities of the analyzed systems and by ranking their division in communities through the built-in metric called modularity. We found that the software systems with highest modularity possess the majority of bugs, and tested whether this result is related to some confounding effect. We found two power laws relating the maximum defect density with two different metrics: the number of detected communities inside a software network and the clustering coefficient. We finally found a linear correlation between clustering coefficient and number of communities. Our results can be used to make predictive hypotheses about software defectiveness of future releases of the analyzed systems.File | Dimensione | Formato | |
---|---|---|---|
IJSEKE2017.pdf
Solo gestori archivio
Tipologia:
versione editoriale (VoR)
Dimensione
913.53 kB
Formato
Adobe PDF
|
913.53 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.