The transverse momentum (p(T)) spectra and elliptic flow coefficient (v(2)) of deuterons and anti-deuterons at mid-rapidity (|y| < 0.5) are measured with the ALICE detector at the LHC in Pb-Pb collisions at root s(NN) = 2.76 TeV. The measurement of the p(T) spectra of (anti-)deuterons is done up to 8 GeV/c in 0-10% centrality class and up to 6 GeV/c in 10-20% and 20-40% centrality classes. The v(2) is measured in the 0.8 < p(T) < 5 GeV/c interval and in six different centrality intervals (0-5, 5-10, 10-20, 20-30, 30-40 and 40-50%) using the scalar product technique. Measured pi(+/-), K-+/- and p+(p) over bar transverse-momentum spectra and v(2) are used to predict the deuteron p(T) spectra and v(2) within the Blast-Wave model. The predictions are able to reproduce the v(2) coefficient in the measured p(T) range and the transverse-momentum spectra for p(T) > 1.8 GeV/c within the experimental uncertainties. The measurement of the coalescence parameter B-2 is performed, showing a p(T) dependence in contrast with the simplest coalescence model, which fails to reproduce also the measured v(2) coefficient. In addition, the coalescence parameter B-2 and the elliptic flow coefficient in the 20-40% centrality interval are compared with the AMPT model which is able, in its version without string melting, to reproduce the measured v(2)(p(T)) and the B-2(p(T)) trend.

Measurement of deuteron spectra and elliptic flow in Pb-Pb collisions at root s(NN)=2.76 TeV at the LHC

Audurier, B.;Casula, E. A. R.;Cicalo, C.;De Falco, A.;Fionda, F. M.;Paul, B.;Puddu, G.;Siddhanta, S.;Terrevoli, C.;Usai, G. L.;
2017-01-01

Abstract

The transverse momentum (p(T)) spectra and elliptic flow coefficient (v(2)) of deuterons and anti-deuterons at mid-rapidity (|y| < 0.5) are measured with the ALICE detector at the LHC in Pb-Pb collisions at root s(NN) = 2.76 TeV. The measurement of the p(T) spectra of (anti-)deuterons is done up to 8 GeV/c in 0-10% centrality class and up to 6 GeV/c in 10-20% and 20-40% centrality classes. The v(2) is measured in the 0.8 < p(T) < 5 GeV/c interval and in six different centrality intervals (0-5, 5-10, 10-20, 20-30, 30-40 and 40-50%) using the scalar product technique. Measured pi(+/-), K-+/- and p+(p) over bar transverse-momentum spectra and v(2) are used to predict the deuteron p(T) spectra and v(2) within the Blast-Wave model. The predictions are able to reproduce the v(2) coefficient in the measured p(T) range and the transverse-momentum spectra for p(T) > 1.8 GeV/c within the experimental uncertainties. The measurement of the coalescence parameter B-2 is performed, showing a p(T) dependence in contrast with the simplest coalescence model, which fails to reproduce also the measured v(2) coefficient. In addition, the coalescence parameter B-2 and the elliptic flow coefficient in the 20-40% centrality interval are compared with the AMPT model which is able, in its version without string melting, to reproduce the measured v(2)(p(T)) and the B-2(p(T)) trend.
2017
Heavy-ion collisions; Relativistic nuclear collisions; Plus AU; Collisions; Dependence; Anisotropy; Expansion; Model
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/228824
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 39
social impact