Gellan nanohydrogel and phospholipid vesicles were combined to incorporate baicalin in new self-assembling core-shell gellan-transfersomes obtained by an easy, scalable method. The vesicles were small in size (~107 nm) and monodispersed (P.I. ≤ 0.24), forming a viscous system (~24 mPa/s) as compared to transfersomes (~1.6 mPa/s), as confirmed by rheological studies. Gellan was anchored to the bilayer domains through cholesterol, and the polymer chains were distributed onto the outer surface of the bilayer, thus forming a core-shell structure, as suggested by SAXS analyses. The optimal carrier ability of core-shell gellan-transfersomes was established by the high deposition of baicalin in the skin (~11% in the whole skin), especially in the deeper tissue (~8% in the dermis). Moreover, their ability to improve baicalin efficacy in anti-inflammatory and skin repair tests was confirmed in vivo in mice, providing the complete skin restoration and inhibiting all the studied inflammatory markers.

Nanodesign of new self-assembling core-shell gellan-transfersomes loading baicalin and in vivo evaluation of repair response in skin

Manconi, Maria;Manca, Maria Letizia;Caddeo, Carla;Valenti, Donatella;Fadda, Anna Maria;Matricardi, Pietro
2018-01-01

Abstract

Gellan nanohydrogel and phospholipid vesicles were combined to incorporate baicalin in new self-assembling core-shell gellan-transfersomes obtained by an easy, scalable method. The vesicles were small in size (~107 nm) and monodispersed (P.I. ≤ 0.24), forming a viscous system (~24 mPa/s) as compared to transfersomes (~1.6 mPa/s), as confirmed by rheological studies. Gellan was anchored to the bilayer domains through cholesterol, and the polymer chains were distributed onto the outer surface of the bilayer, thus forming a core-shell structure, as suggested by SAXS analyses. The optimal carrier ability of core-shell gellan-transfersomes was established by the high deposition of baicalin in the skin (~11% in the whole skin), especially in the deeper tissue (~8% in the dermis). Moreover, their ability to improve baicalin efficacy in anti-inflammatory and skin repair tests was confirmed in vivo in mice, providing the complete skin restoration and inhibiting all the studied inflammatory markers.
2018
Gellan; In vivo studies; Rheological studies; SAXS analysis; Skin delivery; Transfersomes; Bioengineering; Medicine (miscellaneous); Molecular medicine; Biomedical engineering; Materials science (all)
File in questo prodotto:
File Dimensione Formato  
Nanodesign of new self-assembling core-shell gellan-transfersomes loading baicalin and in vivo evaluation of repair response in skin.pdf

Solo gestori archivio

Tipologia: versione editoriale (VoR)
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/234101
Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 41
social impact