We show the vanishing of the log-term in the Fefferman expansion of the Bergman kernel of the disk bundle over a compact simply-connected homogeneous Kähler–Einstein manifold of classical type. Our results extends that in (Engliš and Zhang, Math Z 264(4):901–912, 2010) for the case of Hermitian symmetric spaces of compact type.
The log-term of the Bergman kernel of the disc bundle over a homogeneous Hodge manifold
Andrea Loi;Roberto Mossa;Fabio Zuddas
2017-01-01
Abstract
We show the vanishing of the log-term in the Fefferman expansion of the Bergman kernel of the disk bundle over a compact simply-connected homogeneous Kähler–Einstein manifold of classical type. Our results extends that in (Engliš and Zhang, Math Z 264(4):901–912, 2010) for the case of Hermitian symmetric spaces of compact type.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
log term.pdf
Solo gestori archivio
Tipologia:
versione editoriale (VoR)
Dimensione
504.81 kB
Formato
Adobe PDF
|
504.81 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.