We propose two conjectures about Ricci-flat Kähler metrics: Conjecture 1: A Ricci-flat projectively induced metric is flat. Conjecture 2: A Ricci-flat metric on ann-dimensional complex manifold such that the(Formula presented.)coefficient of the TYZ expansion vanishes is flat. We verify Conjecture 1 (see Theorem 1.1) under the assumptions that the metric is radial and stable-projectively induced and Conjecture 2 (see Theorem 1.2) for complex surfaces whose metric is either radial or complete and ALE. We end the paper by showing, by means of the Simanca metric, that the assumption of Ricci-flatness in Conjecture 1 and in Theorem 1.2 cannot be weakened to scalar-flatness (see Theorem 1.3).
Two conjectures on Ricci-flat Kähler metrics
Andrea Loi;Filippo Salis;Fabio Zuddas
2018-01-01
Abstract
We propose two conjectures about Ricci-flat Kähler metrics: Conjecture 1: A Ricci-flat projectively induced metric is flat. Conjecture 2: A Ricci-flat metric on ann-dimensional complex manifold such that the(Formula presented.)coefficient of the TYZ expansion vanishes is flat. We verify Conjecture 1 (see Theorem 1.1) under the assumptions that the metric is radial and stable-projectively induced and Conjecture 2 (see Theorem 1.2) for complex surfaces whose metric is either radial or complete and ALE. We end the paper by showing, by means of the Simanca metric, that the assumption of Ricci-flatness in Conjecture 1 and in Theorem 1.2 cannot be weakened to scalar-flatness (see Theorem 1.3).File | Dimensione | Formato | |
---|---|---|---|
two conjectures.pdf
Solo gestori archivio
Tipologia:
versione editoriale (VoR)
Dimensione
444.24 kB
Formato
Adobe PDF
|
444.24 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.