We have isolated and analysed the cell envelope of the thermophilic bacterium Thermus thermophilus HB8. Isolated cell walls, characterized by the dominance of the S-layer protein SlpA, are found to be constituted by several protein complexes of high molecular weights. Further isolation steps, starting from the cell wall samples, led to the selective release of the S-layer protein SlpA in solution as confirmed by mass spectrometry. Blue Native gel electrophoresis on these samples showed that SlpA is organized into a specific hierarchical order of oligomeric states that are consistent with the complexes at high molecular weight identified on the total cell wall fraction. The analysis showed that SlpA bases this peculiar organization on monomers and exceptionally stable dimers, leading to the formation of tetramers, heptamers, and decamers. Furthermore, the two elementary units of SlpA, monomers and dimers, are regulated by the presence of calcium not only for the assembling of monomers into dimers, but also for the splitting of dimers into monomers. Finally, the SlpA protein was found to be subjected to specific proteolysis leading to characteristic degradation products. Findings are discussed in terms of S-layer assembling properties as bases for understanding its structure, turn-over and organization.

On the S-layer of Thermus thermophilus and the assembling of its main protein SIpA

Farci, Domenica
;
Esposito, Francesca;Tramontano, Enzo;Piano, Dario
2018-01-01

Abstract

We have isolated and analysed the cell envelope of the thermophilic bacterium Thermus thermophilus HB8. Isolated cell walls, characterized by the dominance of the S-layer protein SlpA, are found to be constituted by several protein complexes of high molecular weights. Further isolation steps, starting from the cell wall samples, led to the selective release of the S-layer protein SlpA in solution as confirmed by mass spectrometry. Blue Native gel electrophoresis on these samples showed that SlpA is organized into a specific hierarchical order of oligomeric states that are consistent with the complexes at high molecular weight identified on the total cell wall fraction. The analysis showed that SlpA bases this peculiar organization on monomers and exceptionally stable dimers, leading to the formation of tetramers, heptamers, and decamers. Furthermore, the two elementary units of SlpA, monomers and dimers, are regulated by the presence of calcium not only for the assembling of monomers into dimers, but also for the splitting of dimers into monomers. Finally, the SlpA protein was found to be subjected to specific proteolysis leading to characteristic degradation products. Findings are discussed in terms of S-layer assembling properties as bases for understanding its structure, turn-over and organization.
2018
Calcium signaling; Oligomerization; S-layer; SlpA; Thermus thermophilus HB8; TTHA1893; Biophysics; Biochemistry; Cell biology
File in questo prodotto:
File Dimensione Formato  
Farci et al. BBA-Biomembranes 2018.pdf

Solo gestori archivio

Descrizione: Articolo principale
Tipologia: versione editoriale (VoR)
Dimensione 2.1 MB
Formato Adobe PDF
2.1 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/247698
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact