With the present work we quantitatively studied the modellability of the inactive state of Class A G protein-coupled receptors (GPCRs). Specifically, we constructed models of one of the Class A GPCRs for which structures solved in the inactive state are available, namely the β2AR, using as templates each of the other class members for which structures solved in the inactive state are also available. Our results showed a detectable linear correlation between model accuracy and model/template sequence identity. This suggests that the likely accuracy of the homology models that can be built for a given receptor can be generally forecasted on the basis of the available templates. We also probed whether sequence alignments that allow for the presence of gaps within the transmembrane domains to account for structural irregularities afford better models than the classical alignment procedures that do not allow for the presence of gaps within such domains. As our results indicated, although the overall differences are very subtle, the inclusion of internal gaps within the transmembrane domains has a noticeable a beneficial effect on the local structural accuracy of the domain in question.

Homology modeling of a Class A GPCR in the inactive conformation: A quantitative analysis of the correlation between model/template sequence identity and model accuracy

Alessandro Deplano;
2016-01-01

Abstract

With the present work we quantitatively studied the modellability of the inactive state of Class A G protein-coupled receptors (GPCRs). Specifically, we constructed models of one of the Class A GPCRs for which structures solved in the inactive state are available, namely the β2AR, using as templates each of the other class members for which structures solved in the inactive state are also available. Our results showed a detectable linear correlation between model accuracy and model/template sequence identity. This suggests that the likely accuracy of the homology models that can be built for a given receptor can be generally forecasted on the basis of the available templates. We also probed whether sequence alignments that allow for the presence of gaps within the transmembrane domains to account for structural irregularities afford better models than the classical alignment procedures that do not allow for the presence of gaps within such domains. As our results indicated, although the overall differences are very subtle, the inclusion of internal gaps within the transmembrane domains has a noticeable a beneficial effect on the local structural accuracy of the domain in question.
2016
G protein-coupled receptors; GPCRs; Homology modeling; Sequence alignment; β2adrenergic receptor; Amino Acid Sequence; Phylogeny; Protein Conformation; Receptors, G-Protein-Coupled; Sequence Alignment; Models, Molecular; Structural Homology, Protein; Spectroscopy; Physical and Theoretical Chemistry; Computer Graphics and Computer-Aided Design; Materials Chemistry2506 Metals and Alloys
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/252894
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
social impact