Solution-based methods represent the most widespread approach used to deposit hybrid organic-inorganic perovskite films for low-cost but efficient solar cells. However, solution-process techniques offer limited control over film morphology and crystallinity, and most importantly do not allow sequential film deposition to produce perovskite-perovskite heterostructures. Here the successful deposition of CH3NH3PbI3 (MAPI) thin films by RF-magnetron sputtering is reported, an industry-tested method to grow large area devices with precisely controlled stoichiometry. MAPI films are grown starting from a single-target made of CH3NH3I (MAI) and PbI2. Films are single-phase, with a barely detectable content of unreacted PbI2, full surface coverage and thickness ranging from less than 200 nm to more than 3 μm. Light absorption and emission properties of the deposited films are comparable to as-grown solution-processed MAPI films. The development of vapor-phase deposition methods is of interest to advance perovskite photovoltaic devices with the possibility of fabricating perovskite multijunction solar cells or multicolor bright light-emitting devices in the whole visible spectrum.
Novel physical vapor deposition approach to hybrid perovskites: Growth of MAPbI3 thin films by RF-magnetron sputtering
Marongiu, Daniela;Sestu, Nicola;Saba, Michele;PATRINI, MADDALENA;Bongiovanni, Giovanni;
2018-01-01
Abstract
Solution-based methods represent the most widespread approach used to deposit hybrid organic-inorganic perovskite films for low-cost but efficient solar cells. However, solution-process techniques offer limited control over film morphology and crystallinity, and most importantly do not allow sequential film deposition to produce perovskite-perovskite heterostructures. Here the successful deposition of CH3NH3PbI3 (MAPI) thin films by RF-magnetron sputtering is reported, an industry-tested method to grow large area devices with precisely controlled stoichiometry. MAPI films are grown starting from a single-target made of CH3NH3I (MAI) and PbI2. Films are single-phase, with a barely detectable content of unreacted PbI2, full surface coverage and thickness ranging from less than 200 nm to more than 3 μm. Light absorption and emission properties of the deposited films are comparable to as-grown solution-processed MAPI films. The development of vapor-phase deposition methods is of interest to advance perovskite photovoltaic devices with the possibility of fabricating perovskite multijunction solar cells or multicolor bright light-emitting devices in the whole visible spectrum.File | Dimensione | Formato | |
---|---|---|---|
28-Bonomi_SciRep_s41598-018-33760-w.pdf
accesso aperto
Tipologia:
versione editoriale (VoR)
Dimensione
1.77 MB
Formato
Adobe PDF
|
1.77 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.