Given a constant k>1 and a real-valued function K on the hyperbolic plane H2, we study the problem of finding, for any epsilon approximate to 0, a closed and embedded curve u epsilon in H2 having geodesic curvature k+epsilon K(u epsilon) at each point.

Embedded loops in the hyperbolic plane with prescribed, almost constant curvature

F. Zuddas
Secondo
2019-01-01

Abstract

Given a constant k>1 and a real-valued function K on the hyperbolic plane H2, we study the problem of finding, for any epsilon approximate to 0, a closed and embedded curve u epsilon in H2 having geodesic curvature k+epsilon K(u epsilon) at each point.
2019
Hyperbolic plane; Prescribed curvature; Energy functional; Finite-dimensional reduction
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/269628
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact