Let (M, g) be a Kahler manifold whose associated Kahler form omega is integral and let (L, h) -> (M, omega) be a quantization hermitian line bundle. In this paper we study those Kahle': manifolds (M, g) admitting a finite TYCZ expansion, namely those for which the associated Kempf distortion function T-mg is of the form: T-mg (p) = f(s) (p)m(s) + f(s-1) (p)m(s-1)+ . . . + fr(p)m(T), f(j) is an element of C-infinity(M), s, r is an element of Z. We show that if the TYCZ expansion is finite then T-mg is indeed a polynomial in m of degree n, n = dim(C) M, and the log-term of the Szego kernel of the disc bundle D C L* vanishes (where L* is the dual bundle of L). Moreover, we provide a complete classification of the Kdhler manifolds admitting finite TYCZ expansion either when M is a complex curve or when M is a complex surface with a cscK metric which M admits a radial Kahler potential.

Finite TYCZ expansions and cscK metrics

A. Loi
;
R. Mossa;F. Zuddas
2020-01-01

Abstract

Let (M, g) be a Kahler manifold whose associated Kahler form omega is integral and let (L, h) -> (M, omega) be a quantization hermitian line bundle. In this paper we study those Kahle': manifolds (M, g) admitting a finite TYCZ expansion, namely those for which the associated Kempf distortion function T-mg is of the form: T-mg (p) = f(s) (p)m(s) + f(s-1) (p)m(s-1)+ . . . + fr(p)m(T), f(j) is an element of C-infinity(M), s, r is an element of Z. We show that if the TYCZ expansion is finite then T-mg is indeed a polynomial in m of degree n, n = dim(C) M, and the log-term of the Szego kernel of the disc bundle D C L* vanishes (where L* is the dual bundle of L). Moreover, we provide a complete classification of the Kdhler manifolds admitting finite TYCZ expansion either when M is a complex curve or when M is a complex surface with a cscK metric which M admits a radial Kahler potential.
2020
TYCZ expansion; Szego kernel; Log-term; Kempf distortion function; Radial potential; Constant scalar curvature metric
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0022247X19309837-main (1).pdf

Solo gestori archivio

Descrizione: VoR
Tipologia: versione editoriale (VoR)
Dimensione 484.14 kB
Formato Adobe PDF
484.14 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
TYCZ+expansions+and+cscK+metrics+arxiv_Cover (1).pdf

accesso aperto

Descrizione: AAM
Tipologia: versione post-print (AAM)
Dimensione 1.08 MB
Formato Adobe PDF
1.08 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/280852
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact