The patterning of functional materials represents a crucial step for the implementation of organic semiconducting materials into functional devices. Classical patterning techniques such as photolithography or shadow masking exhibit certain limitations in terms of choice of materials, processing techniques and feasibility for large area fabrication. The use of self-assembled monolayers (SAMs) as a patterning tool offers a wide variety of opportunities, from the region-selective deposition of active components to guiding the crystallization direction. Here, we discuss general techniques and mechanisms for SAM-based patterning and show that all necessary components for organic electronic devices, i.e., conducting materials, dielectrics, organic semiconductors, and further functional layers can be patterned with the use of self-assembled monolayers. The advantages and limitations, and potential further applications of patterning approaches based on self-assembled monolayers are critically discussed.

Self-Assembled Monolayers as Patterning Tool for Organic Electronic Devices

Sforazzini G
Secondo
Membro del Collaboration Group
;
2017-01-01

Abstract

The patterning of functional materials represents a crucial step for the implementation of organic semiconducting materials into functional devices. Classical patterning techniques such as photolithography or shadow masking exhibit certain limitations in terms of choice of materials, processing techniques and feasibility for large area fabrication. The use of self-assembled monolayers (SAMs) as a patterning tool offers a wide variety of opportunities, from the region-selective deposition of active components to guiding the crystallization direction. Here, we discuss general techniques and mechanisms for SAM-based patterning and show that all necessary components for organic electronic devices, i.e., conducting materials, dielectrics, organic semiconductors, and further functional layers can be patterned with the use of self-assembled monolayers. The advantages and limitations, and potential further applications of patterning approaches based on self-assembled monolayers are critically discussed.
File in questo prodotto:
File Dimensione Formato  
Advanced Materials 2017, 29, 1605286.pdf

Solo gestori archivio

Tipologia: versione editoriale (VoR)
Dimensione 4.53 MB
Formato Adobe PDF
4.53 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/284056
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 71
  • ???jsp.display-item.citation.isi??? 72
social impact