Software engineering methodologies rely on version control systems such as git to store source code artifacts and manage changes to the codebase. Pull requests include chunks of source code, history of changes, log messages around a proposed change of the mainstream codebase, and much discussion on whether to integrate such changes or not. A better understanding of what contributes to a pull request fate and latency will allow us to build predictive models of what is going to happen and when. Several factors can influence the acceptance of pull requests, many of which are related to the individual aspects of software developers. In this study, we aim to understand how the affect (e.g., sentiment, discrete emotions, and valence-arousal-dominance dimensions) expressed in the discussion of pull request issues influence the acceptance of pull requests. We conducted a mining study of large git software repositories and analyzed more than 150,000 issues with more than 1,000,000 comments in them. We built a model to understand whether the affect and the politeness have an impact on the chance of issues and pull requests to be merged - i.e., the code which fixes the issue is integrated in the codebase. We built two logistic classifiers, one without affect metrics and one with them. By comparing the two classifiers, we show that the affect metrics improve the prediction performance. Our results show that valence (expressed in comments received and posted by a reporter) and joy expressed in the comments written by a reporter are linked to a higher likelihood of issues to be merged. On the contrary, sadness, anger, and arousal expressed in the comments written by a reporter, and anger, arousal, and dominance expressed in the comments received by a reporter, are linked to a lower likelihood of a pull request to be merged.

How do you propose your code changes? Empirical analysis of affect metrics of pull requests on GitHub

Ortu, Marco;Marchesi, Michele;Tonelli, Roberto;Destefanis, Giuseppe;
2020-01-01

Abstract

Software engineering methodologies rely on version control systems such as git to store source code artifacts and manage changes to the codebase. Pull requests include chunks of source code, history of changes, log messages around a proposed change of the mainstream codebase, and much discussion on whether to integrate such changes or not. A better understanding of what contributes to a pull request fate and latency will allow us to build predictive models of what is going to happen and when. Several factors can influence the acceptance of pull requests, many of which are related to the individual aspects of software developers. In this study, we aim to understand how the affect (e.g., sentiment, discrete emotions, and valence-arousal-dominance dimensions) expressed in the discussion of pull request issues influence the acceptance of pull requests. We conducted a mining study of large git software repositories and analyzed more than 150,000 issues with more than 1,000,000 comments in them. We built a model to understand whether the affect and the politeness have an impact on the chance of issues and pull requests to be merged - i.e., the code which fixes the issue is integrated in the codebase. We built two logistic classifiers, one without affect metrics and one with them. By comparing the two classifiers, we show that the affect metrics improve the prediction performance. Our results show that valence (expressed in comments received and posted by a reporter) and joy expressed in the comments written by a reporter are linked to a higher likelihood of issues to be merged. On the contrary, sadness, anger, and arousal expressed in the comments written by a reporter, and anger, arousal, and dominance expressed in the comments received by a reporter, are linked to a lower likelihood of a pull request to be merged.
2020
Behavioral software engineering; human aspects; sentiment analysis; software engineering; software quality; version control systems
File in questo prodotto:
File Dimensione Formato  
09117137IEEEACCESS.pdf

accesso aperto

Tipologia: versione editoriale
Dimensione 7.48 MB
Formato Adobe PDF
7.48 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/292854
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact