Background. Bicuspid aortic valve (BAV) is a common congenital heart defect with increased prevalence of aortic dilatation and dissection. BAV has an autosomal dominant pattern of inheritance with reduced penetrance and variable expressivity. BAV has been described as an isolated trait or associated with other clinical manifestations in syndromic conditions. Identification of a syndromic condition in a BAV patient is clinically relevant in order to personalize indication to aortic surgery. We aimed to point out how genetic diagnosis by next-generation sequencing (NGS) can improve management of a patient with complex BAV clinical picture. Methods and Results. We describe a 45-year-old Caucasian male with BAV, thoracic aortic root and ascending aorta dilatation, and connective features evocative but inconclusive for clinical diagnosis of Marfan syndrome (MFS). Targeted (91 genes) NGS was used. Proband genetic variants were investigated in first-degree relatives. Proband carried 5 rare variants in 4 genes: FBN1(p.Asn542Ser and p.Lys2460Arg), NOTCH1(p.Val1739Met), LTBP1(p.Arg1330Gln), and TGFBR3(p.Arg423Trp). The two FBN1 variants were inherited in cis by the mother, showing systemic features evocative of MFS, but with a milder phenotype than that observed in the proband. Careful clinical observation along with the presence of the FBN1 variants allowed diagnosis of MFS in the proband and in his mother. NOTCH1 variant was found in mother and brother, not exhibiting BAV, thus not definitely supporting/excluding association with BAV. Interestingly, the proband, his brother and father, all showing root dilatation, and his sister, with upper range aortic root dimension, were carriers of a TGFBR3 variant. LTBP1 might also modulate the vascular phenotype. Conclusions. Our results underline the usefulness of NGS together with family evaluation in diagnosis of patients with monogenic traits and overlapping clinical manifestations due to contribution of the same genes and/or presence of comorbidities determined by different genes.

Bicuspid Aortic Valve: Role of Multiple Gene Variants in Influencing the Clinical Phenotype

Giglio, Sabrina
Membro del Collaboration Group
;
2018-01-01

Abstract

Background. Bicuspid aortic valve (BAV) is a common congenital heart defect with increased prevalence of aortic dilatation and dissection. BAV has an autosomal dominant pattern of inheritance with reduced penetrance and variable expressivity. BAV has been described as an isolated trait or associated with other clinical manifestations in syndromic conditions. Identification of a syndromic condition in a BAV patient is clinically relevant in order to personalize indication to aortic surgery. We aimed to point out how genetic diagnosis by next-generation sequencing (NGS) can improve management of a patient with complex BAV clinical picture. Methods and Results. We describe a 45-year-old Caucasian male with BAV, thoracic aortic root and ascending aorta dilatation, and connective features evocative but inconclusive for clinical diagnosis of Marfan syndrome (MFS). Targeted (91 genes) NGS was used. Proband genetic variants were investigated in first-degree relatives. Proband carried 5 rare variants in 4 genes: FBN1(p.Asn542Ser and p.Lys2460Arg), NOTCH1(p.Val1739Met), LTBP1(p.Arg1330Gln), and TGFBR3(p.Arg423Trp). The two FBN1 variants were inherited in cis by the mother, showing systemic features evocative of MFS, but with a milder phenotype than that observed in the proband. Careful clinical observation along with the presence of the FBN1 variants allowed diagnosis of MFS in the proband and in his mother. NOTCH1 variant was found in mother and brother, not exhibiting BAV, thus not definitely supporting/excluding association with BAV. Interestingly, the proband, his brother and father, all showing root dilatation, and his sister, with upper range aortic root dimension, were carriers of a TGFBR3 variant. LTBP1 might also modulate the vascular phenotype. Conclusions. Our results underline the usefulness of NGS together with family evaluation in diagnosis of patients with monogenic traits and overlapping clinical manifestations due to contribution of the same genes and/or presence of comorbidities determined by different genes.
2018
Aortic valve; Dilatation; Pathologic; Fibrillin-1; Heart valve diseases; High-throughput nucleotide sequencing; Humans; Italy; Male; Middle aged; Receptor; Notch1; Genetic variation; Phenotype; Biochemistry; Genetics and molecular biology (all); Immunology and microbiology (all)
File in questo prodotto:
File Dimensione Formato  
Bicuspid Aortic Valve- Role of Multiple Gene Variants in Influencing the Clinical Phenotype.pdf

accesso aperto

Tipologia: versione editoriale (VoR)
Dimensione 1.81 MB
Formato Adobe PDF
1.81 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/298080
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 7
social impact