The impact of the relative amount of ingredients, wheat variety, and kneading time on the thermal properties of semolina doughs were investigated by means of thermogravimetric analysis (TGA). The doughs were prepared by mixing water, semolina, yeast, and salt in different proportions. The gelatinized flour fraction plays an important role in the thermal properties' definition, while the water amount influences the development of the dough network and, consequently, the starch gelatinization phenomena. Furthermore, the amount of yeast and salt influences the dough network force and, consequently, the thermal properties. The TGA technique was applied in order to evidence the mass loss as a function of the increasing temperature, considering that this behavior depends on the dough network force and extension. In such a way, it was possible to find some information on the relationship between the dough characteristics and the thermogravimetric analysis outputs. The study is devoted to acquiring deeper knowledge about the thermophysical characteristics of doughs in the breadmaking industrial processes, where the controllability and the energy performances need to be improved. A deeper knowledge of the dough properties, in terms of measurable parameters, could help to decrease the amounts of off-specification products, resulting in a much more energy-efficient and sustainable processing.

Thermal properties of semolina doughs with different relative amount of ingredients

Fanari F.;Grosso M.
;
Desogus F.
2020-01-01

Abstract

The impact of the relative amount of ingredients, wheat variety, and kneading time on the thermal properties of semolina doughs were investigated by means of thermogravimetric analysis (TGA). The doughs were prepared by mixing water, semolina, yeast, and salt in different proportions. The gelatinized flour fraction plays an important role in the thermal properties' definition, while the water amount influences the development of the dough network and, consequently, the starch gelatinization phenomena. Furthermore, the amount of yeast and salt influences the dough network force and, consequently, the thermal properties. The TGA technique was applied in order to evidence the mass loss as a function of the increasing temperature, considering that this behavior depends on the dough network force and extension. In such a way, it was possible to find some information on the relationship between the dough characteristics and the thermogravimetric analysis outputs. The study is devoted to acquiring deeper knowledge about the thermophysical characteristics of doughs in the breadmaking industrial processes, where the controllability and the energy performances need to be improved. A deeper knowledge of the dough properties, in terms of measurable parameters, could help to decrease the amounts of off-specification products, resulting in a much more energy-efficient and sustainable processing.
2020
breadmaking; doughs; energy performance; ingredients; kneading; salt; semolina; sustainability; thermal properties; yeast
File in questo prodotto:
File Dimensione Formato  
sustainability-12-02235.pdf

accesso aperto

Tipologia: versione editoriale (VoR)
Dimensione 4.05 MB
Formato Adobe PDF
4.05 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/300444
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 15
social impact