In this paper we establish a multiplicity result for a class of unilateral, nonlinear, nonlocal problems with nonsmooth potential (variational-hemivariational inequalities), using the degree map of multivalued perturbations of fractional nonlinear operators of monotone type, the fact that the degree at a local minimizer of the corresponding Euler functional is equal one, and controlling the degree at small balls and at big balls.

The Obstacle Problem at Zero for the Fractional p-Laplacian

Frassu S.;Staicu V.
2022-01-01

Abstract

In this paper we establish a multiplicity result for a class of unilateral, nonlinear, nonlocal problems with nonsmooth potential (variational-hemivariational inequalities), using the degree map of multivalued perturbations of fractional nonlinear operators of monotone type, the fact that the degree at a local minimizer of the corresponding Euler functional is equal one, and controlling the degree at small balls and at big balls.
2022
Degree theory; Fractional p-Laplacian; Nonsmooth analysis; Obstacle problem; Operator of monotone type
File in questo prodotto:
File Dimensione Formato  
Frassu Rocha Staicu2.pdf

accesso aperto

Tipologia: versione pre-print
Dimensione 394.97 kB
Formato Adobe PDF
394.97 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/312260
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact