We develop a nonparametric procedure to assess the accuracy of the normality assumption for annual rainfall totals (ART), based on the marginal statistics of daily rainfall. The procedure is addressed to practitioners and hydrologists that operate in data-poor regions. To do so we use 1) goodness-of-fit metrics to conclude on the approximate convergence of the empirical distribution of annual rainfall totals to a normal shape and classify 3007 daily rainfall time series from the NOAA/NCDC Global Historical Climatology Network database, with at least 30 years of recordings, into Gaussian (G) and non-Gaussian (NG) groups; 2) logistic regression analysis to identify the statistics of daily rainfall that are most descriptive of the G/NG classification; and 3) a random-search algorithm to conclude on a set of constraints that allows classification of ART samples on the basis of the marginal statistics of daily rain rates. The analysis shows that the Anderson–Darling (AD) test statistic is the most conservative one in determining approximate Gaussianity of ART samples (followed by Cramer–Von Mises and Lilliefors’s version of Kolmogorov–Smirnov) and that daily rainfall time series with fraction of wet days fwd < 0.1 and daily skewness coefficient of positive rain rates skwd > 5.92 deviate significantly from the normal shape. In addition, we find that continental climate (type D) exhibits the highest fraction of Gaussian distributed ART samples (i.e., 74.45%; AD test at α = 5% significance level), followed by warm temperate (type C; 72.80%), equatorial (type A; 68.83%), polar (type E; 62.96%), and arid (type B; 60.29%) climates.

A nonparametric procedure to assess the accuracy of the normality assumption for annual rainfall totals, based on the marginal statistics of daily rainfall: an application to the NOAA/NCDC rainfall database

Ruggiu D.
;
Viola F.;
2021-01-01

Abstract

We develop a nonparametric procedure to assess the accuracy of the normality assumption for annual rainfall totals (ART), based on the marginal statistics of daily rainfall. The procedure is addressed to practitioners and hydrologists that operate in data-poor regions. To do so we use 1) goodness-of-fit metrics to conclude on the approximate convergence of the empirical distribution of annual rainfall totals to a normal shape and classify 3007 daily rainfall time series from the NOAA/NCDC Global Historical Climatology Network database, with at least 30 years of recordings, into Gaussian (G) and non-Gaussian (NG) groups; 2) logistic regression analysis to identify the statistics of daily rainfall that are most descriptive of the G/NG classification; and 3) a random-search algorithm to conclude on a set of constraints that allows classification of ART samples on the basis of the marginal statistics of daily rain rates. The analysis shows that the Anderson–Darling (AD) test statistic is the most conservative one in determining approximate Gaussianity of ART samples (followed by Cramer–Von Mises and Lilliefors’s version of Kolmogorov–Smirnov) and that daily rainfall time series with fraction of wet days fwd < 0.1 and daily skewness coefficient of positive rain rates skwd > 5.92 deviate significantly from the normal shape. In addition, we find that continental climate (type D) exhibits the highest fraction of Gaussian distributed ART samples (i.e., 74.45%; AD test at α = 5% significance level), followed by warm temperate (type C; 72.80%), equatorial (type A; 68.83%), polar (type E; 62.96%), and arid (type B; 60.29%) climates.
2021
Rainfall; Statistical techniques; Subseasonal variability; Interannual variability; Time series; Uncertainty; Climate classification/regimes
File in questo prodotto:
File Dimensione Formato  
2021_Ruggiu_JAMC.pdf

accesso aperto

Descrizione: articolo online
Tipologia: versione editoriale (VoR)
Dimensione 1.7 MB
Formato Adobe PDF
1.7 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/314421
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact