Background: Clinical and experimental studies support the therapeutic potential of Withania somnifera (WS) (L.) Dunal on anxiety disorders. This potential is attributable to components present in different plant extracts; however, the individual compound(s) endowed with specific anxiolytic effects and potential modulatory activity of the GABAA receptor complex (GABAAR) have remained unidentified until the recent isolation from a WS methanolic root extract of some GABAAR-active compounds, including the long alkyl-chain ferulic acid ester, docosanyl ferulate (DF). Aims: This study was designed to assess whether DF (0.05, 0.25 and 2 mg/kg), similarly to diazepam (2 mg/kg), may exert anxiolytic effects, whether these effects may be significantly blocked by the benzodiazepine antagonist flumazenil (10 mg/kg) and whether DF may lack some of the benzodiazepines’ typical motor, cognitive and motivational side effects. Methods: The behavioural paradigms Elevated Plus Maze, Static Rods, Novel Object Recognition, Place Conditioning and potentiation of ethanol-induced Loss of Righting Reflex were applied on male CD-1 mice. Results: Similarly to diazepam, DF exerts anxiolytic effects that are blocked by flumazenil. Moreover, at the full anxiolytic dose of 2 mg/kg, DF lacks typical benzodiazepine-like side effects on motor and cognitive performances and on place conditioning. Moreover, DF fails to potentiate ethanol’s (3 g/kg) depressant activity at the ethanol-induced Loss of Righting Reflex paradigm. Conclusions: These data point to DF as an effective benzodiazepine-like anxiolytic compound that, in light of its lack of motor, mnemonic and motivational side effects, could be a suitable candidate for the treatment of anxiety disorders.
The biologically active compound of Withania somnifera (L.) Dunal, docosanyl ferulate, is endowed with potent anxiolytic properties but devoid of typical benzodiazepine-like side effects
Cottiglia F.;Maccioni E.;Talani G.;Sanna E.;Bassareo V.;Acquas E.
2021-01-01
Abstract
Background: Clinical and experimental studies support the therapeutic potential of Withania somnifera (WS) (L.) Dunal on anxiety disorders. This potential is attributable to components present in different plant extracts; however, the individual compound(s) endowed with specific anxiolytic effects and potential modulatory activity of the GABAA receptor complex (GABAAR) have remained unidentified until the recent isolation from a WS methanolic root extract of some GABAAR-active compounds, including the long alkyl-chain ferulic acid ester, docosanyl ferulate (DF). Aims: This study was designed to assess whether DF (0.05, 0.25 and 2 mg/kg), similarly to diazepam (2 mg/kg), may exert anxiolytic effects, whether these effects may be significantly blocked by the benzodiazepine antagonist flumazenil (10 mg/kg) and whether DF may lack some of the benzodiazepines’ typical motor, cognitive and motivational side effects. Methods: The behavioural paradigms Elevated Plus Maze, Static Rods, Novel Object Recognition, Place Conditioning and potentiation of ethanol-induced Loss of Righting Reflex were applied on male CD-1 mice. Results: Similarly to diazepam, DF exerts anxiolytic effects that are blocked by flumazenil. Moreover, at the full anxiolytic dose of 2 mg/kg, DF lacks typical benzodiazepine-like side effects on motor and cognitive performances and on place conditioning. Moreover, DF fails to potentiate ethanol’s (3 g/kg) depressant activity at the ethanol-induced Loss of Righting Reflex paradigm. Conclusions: These data point to DF as an effective benzodiazepine-like anxiolytic compound that, in light of its lack of motor, mnemonic and motivational side effects, could be a suitable candidate for the treatment of anxiety disorders.File | Dimensione | Formato | |
---|---|---|---|
A_Maccioni_et al Acquas JoP_2021.pdf
Solo gestori archivio
Tipologia:
versione post-print (AAM)
Dimensione
3.57 MB
Formato
Adobe PDF
|
3.57 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.