In this paper, we generalize a classical result of Bour concerning helicoidal surfaces in the three-dimensional Euclidean space R3 to the case of helicoidal surfaces in the Bianchi– Cartan–Vranceanu (BCV) spaces, i.e., in the Riemannian 3-manifolds whose metrics have groups of isometries of dimension 4 or 6, except the hyperbolic one. In particular, we prove that in a BCV-space there exists a two-parameter family of helicoidal surfaces isometric to a given helicoidal surface; then, by making use of this two-parameter representation, we characterize helicoidal surfaces which have constant mean curvature, including the minimal ones.
Bour’s theorem and helicoidal surfaces with constant mean curvature in the Bianchi–Cartan–Vranceanu spaces
Caddeo, RenzoMembro del Collaboration Group
;Onnis, Irene I.;Piu, Paola
2022-01-01
Abstract
In this paper, we generalize a classical result of Bour concerning helicoidal surfaces in the three-dimensional Euclidean space R3 to the case of helicoidal surfaces in the Bianchi– Cartan–Vranceanu (BCV) spaces, i.e., in the Riemannian 3-manifolds whose metrics have groups of isometries of dimension 4 or 6, except the hyperbolic one. In particular, we prove that in a BCV-space there exists a two-parameter family of helicoidal surfaces isometric to a given helicoidal surface; then, by making use of this two-parameter representation, we characterize helicoidal surfaces which have constant mean curvature, including the minimal ones.File | Dimensione | Formato | |
---|---|---|---|
Bour.pdf
accesso aperto
Tipologia:
versione editoriale (VoR)
Dimensione
2.12 MB
Formato
Adobe PDF
|
2.12 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.