Purpose - The subject of the paper is the nnechatronic design of a novel robotic hand, cassino-underactuated-multifinger-hand (Ca.U.M.Ha.), along with its prototype and the experimental analysis of its grasping of soft and rigid objects with different shapes, sizes and materials. The paper aims to discuss these issues. Design/methodology/approach - Ca.U.M.Ha. is designed with four identical underac-tuated fingers and an opposing thumb, all joined to a rigid palm and actuated by means of double-acting pneumatic cylinders. In particular, each underactuated finger with three phalanxes and one actuator is able to grasp cylindrical objects with different shapes and sizes, while the common electropneumatic operation of the four underactuated fingers gives an additional auto-adaptability to grasp objects with irregular shapes. Moreover, the actuating force control is allowed by a closed-loop pressure control within the pushing chambers of the pneumatic cylinders of the four underactuated fingers, because of a pair of two-way/two-position pulse-widthmodulation (PWM) modulated pneumatic digital valves, which can also be operated under ON/OFF modes. Findings - The grasping of soft and rigid objects with different shapes, sizes and materials is a very difficult task that requires a complex mechatronic design, as proposed and developed worldwide, while Ca.U.M.Ha. offers these performances through only a single ON/OFF or analogue signal. Practical implications - Ca.U.M.Ha. could find several practical applications in industrial environments since it is characterized by a robust and low-cost mechatronic design, flexibility and easy control, which are based on the use of easy-running components. Originality/value - Ca.U.M.Ha. shows a novel mechatronic design that is based on a robust mechanical design and an easy operation and control with high dexterity and reliability to perform a safe grasp of objects with different shapes, sizes and materials.

Mechatronic Design and Experimental Validation of a Novel Robotic Hand

Rea P.
2014-01-01

Abstract

Purpose - The subject of the paper is the nnechatronic design of a novel robotic hand, cassino-underactuated-multifinger-hand (Ca.U.M.Ha.), along with its prototype and the experimental analysis of its grasping of soft and rigid objects with different shapes, sizes and materials. The paper aims to discuss these issues. Design/methodology/approach - Ca.U.M.Ha. is designed with four identical underac-tuated fingers and an opposing thumb, all joined to a rigid palm and actuated by means of double-acting pneumatic cylinders. In particular, each underactuated finger with three phalanxes and one actuator is able to grasp cylindrical objects with different shapes and sizes, while the common electropneumatic operation of the four underactuated fingers gives an additional auto-adaptability to grasp objects with irregular shapes. Moreover, the actuating force control is allowed by a closed-loop pressure control within the pushing chambers of the pneumatic cylinders of the four underactuated fingers, because of a pair of two-way/two-position pulse-widthmodulation (PWM) modulated pneumatic digital valves, which can also be operated under ON/OFF modes. Findings - The grasping of soft and rigid objects with different shapes, sizes and materials is a very difficult task that requires a complex mechatronic design, as proposed and developed worldwide, while Ca.U.M.Ha. offers these performances through only a single ON/OFF or analogue signal. Practical implications - Ca.U.M.Ha. could find several practical applications in industrial environments since it is characterized by a robust and low-cost mechatronic design, flexibility and easy control, which are based on the use of easy-running components. Originality/value - Ca.U.M.Ha. shows a novel mechatronic design that is based on a robust mechanical design and an easy operation and control with high dexterity and reliability to perform a safe grasp of objects with different shapes, sizes and materials.
2014
force control; industrial robotics; mechatronics; pneumatic grippers
File in questo prodotto:
File Dimensione Formato  
Industrial_Robot_17103865.pdf

Solo gestori archivio

Dimensione 709.79 kB
Formato Adobe PDF
709.79 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/317773
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 3
social impact