Let (g, X) be a Kähler-Ricci soliton (KRS) on a complex manifold M. We prove that if the Kähler manifold (M, g) can be Kähler immersed into a definite or indefinite complex space form then g is Einstein. Notice that there is no topological assumptions on the manifold M and the Kähler immersion is not required to be injective. Our result extends the result obtained in Bedulli and Gori [Proc. Amer. Math. Soc. 142 (2014), pp. 1777-1781] asserting that a KRS on a compact Kähler submanifold M ⊂ CPN which is a complete intersection is Kähler-Einstein (KE).
KÄhler immersions of KÄhler-Ricci solitons into definite or indefinite complex space forms
Loi A.;Mossa R.
2021-01-01
Abstract
Let (g, X) be a Kähler-Ricci soliton (KRS) on a complex manifold M. We prove that if the Kähler manifold (M, g) can be Kähler immersed into a definite or indefinite complex space form then g is Einstein. Notice that there is no topological assumptions on the manifold M and the Kähler immersion is not required to be injective. Our result extends the result obtained in Bedulli and Gori [Proc. Amer. Math. Soc. 142 (2014), pp. 1777-1781] asserting that a KRS on a compact Kähler submanifold M ⊂ CPN which is a complete intersection is Kähler-Einstein (KE).File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
[18] A. Loi, R. Mossa, Proc. Amer. Math. Soc. 149 (2021), no. 11, 4931-4941.pdf
accesso aperto
Descrizione: pdf
Tipologia:
versione editoriale (VoR)
Dimensione
240.21 kB
Formato
Adobe PDF
|
240.21 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.