The present study is aimed at valorizing grape pomace, one of the most abundant winery-making by-products of the Mediterranean area, through the extraction of the main bioactive compounds from the skin of grape pomace and using them to manufacture innovative nanoformulations capable of both avoiding skin damages and promoting skincare. The phytochemicals were recovered through maceration in hydroethanolic solution. Catechin, quercetin, fisetin and gallic acid, which are known for their antioxidant power, were detected as the main compounds of the extract. Liposomes and phospholipid vesicles modified with glycerol or Montanov 82® or a combination of both, were used as carriers for the extract. The vesicles were small (~183 nm), slightly polydispersed (PI ≥ 0.28), and highly negatively charged (~−50 mV). The extract was loaded in high amounts in all vesicles (~100%) irrespective of their composition. The antioxidant activity of the extract, measured by using the DPPH (2,2-Diphenyl-1-picrylhydrazyl) test, was 84 ± 1%, and slightly increased when loaded into the vesicles (~89%, P < 0.05). The grape pomace extract loaded vesicles were highly biocompatible and able to protect fibroblasts (3T3) from the oxidative stress induced by hydrogen peroxide.

Extraction of the antioxidant phytocomplex from wine-making by-products and sustainable loading in phospholipid vesicles specifically tailored for skin protection

Perra M.;Bacchetta G.;Muntoni A.;De Gioannis G.;Manca M. L.
;
Manconi M.
Ultimo
2021-01-01

Abstract

The present study is aimed at valorizing grape pomace, one of the most abundant winery-making by-products of the Mediterranean area, through the extraction of the main bioactive compounds from the skin of grape pomace and using them to manufacture innovative nanoformulations capable of both avoiding skin damages and promoting skincare. The phytochemicals were recovered through maceration in hydroethanolic solution. Catechin, quercetin, fisetin and gallic acid, which are known for their antioxidant power, were detected as the main compounds of the extract. Liposomes and phospholipid vesicles modified with glycerol or Montanov 82® or a combination of both, were used as carriers for the extract. The vesicles were small (~183 nm), slightly polydispersed (PI ≥ 0.28), and highly negatively charged (~−50 mV). The extract was loaded in high amounts in all vesicles (~100%) irrespective of their composition. The antioxidant activity of the extract, measured by using the DPPH (2,2-Diphenyl-1-picrylhydrazyl) test, was 84 ± 1%, and slightly increased when loaded into the vesicles (~89%, P < 0.05). The grape pomace extract loaded vesicles were highly biocompatible and able to protect fibroblasts (3T3) from the oxidative stress induced by hydrogen peroxide.
2021
Skin delivery; Grape pomace; Ethanol-water extraction; Phospholipid vesicles; Fibroblasts; Antioxidant
File in questo prodotto:
File Dimensione Formato  
Extraction of the antioxidant phytocomplex from wine-making by-products and sustainable loading in phospholipid vesicles specifically tailored for skin protection.pdf

accesso aperto

Descrizione: articolo online
Tipologia: versione editoriale
Dimensione 2.45 MB
Formato Adobe PDF
2.45 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/323094
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 24
social impact