We study this zero-flux attraction–repulsion chemotaxis model, with linear and superlinear production g for the chemorepellent and sublinear rate f for the chemoattractant: ut=Δu−χ∇⋅(u∇v)+ξ∇⋅(u∇w) in Ω×(0,Tmax),vt=Δv−f(u)v in Ω×(0,Tmax),0=Δw−δw+g(u) in Ω×(0,Tmax). In this problem, Ω is a bounded and smooth domain of Rn, for n≥1, χ,ξ,δ>0, f(u) and g(u) reasonably regular functions generalizing the prototypes f(u)=Kuα and g(u)=γul, with K,γ>0 and proper α,l>0. Once it is indicated that any sufficiently smooth u(x,0)=u0(x)≥0 and v(x,0)=v0(x)≥0 produce a unique classical and nonnegative solution (u,v,w) to (1), which is defined in Ω×(0,Tmax), we establish that for any such (u0,v0), the life span Tmax=∞ and u,v and w are uniformly bounded in Ω×(0,∞), (i) for l=1, n∈{1,2}, and any ξ>0, (ii) for l=1, n≥3, and ξ larger than a quantity depending on χ‖v0‖L^{infty}(Ω), (iii) for l>1,any ξ>0, and in any dimensional settings. Finally, an illustrative analysis about the effect by logistic and repulsive actions on chemotactic phenomena is proposed by comparing the results herein derived for the linear production case with those in Lankeit and Wang (2017).
Boundedness in a chemotaxis system with consumed chemoattractant and produced chemorepellent
Frassu S.;Viglialoro G.
2021-01-01
Abstract
We study this zero-flux attraction–repulsion chemotaxis model, with linear and superlinear production g for the chemorepellent and sublinear rate f for the chemoattractant: ut=Δu−χ∇⋅(u∇v)+ξ∇⋅(u∇w) in Ω×(0,Tmax),vt=Δv−f(u)v in Ω×(0,Tmax),0=Δw−δw+g(u) in Ω×(0,Tmax). In this problem, Ω is a bounded and smooth domain of Rn, for n≥1, χ,ξ,δ>0, f(u) and g(u) reasonably regular functions generalizing the prototypes f(u)=Kuα and g(u)=γul, with K,γ>0 and proper α,l>0. Once it is indicated that any sufficiently smooth u(x,0)=u0(x)≥0 and v(x,0)=v0(x)≥0 produce a unique classical and nonnegative solution (u,v,w) to (1), which is defined in Ω×(0,Tmax), we establish that for any such (u0,v0), the life span Tmax=∞ and u,v and w are uniformly bounded in Ω×(0,∞), (i) for l=1, n∈{1,2}, and any ξ>0, (ii) for l=1, n≥3, and ξ larger than a quantity depending on χ‖v0‖L^{infty}(Ω), (iii) for l>1,any ξ>0, and in any dimensional settings. Finally, an illustrative analysis about the effect by logistic and repulsive actions on chemotactic phenomena is proposed by comparing the results herein derived for the linear production case with those in Lankeit and Wang (2017).File | Dimensione | Formato | |
---|---|---|---|
Frassu-Viglialoro2021_NA.pdf
Solo gestori archivio
Tipologia:
versione editoriale (VoR)
Dimensione
696.48 kB
Formato
Adobe PDF
|
696.48 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
FrassuViglialoro Preprint.pdf
accesso aperto
Tipologia:
versione pre-print
Dimensione
355.5 kB
Formato
Adobe PDF
|
355.5 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.