The aim of this study was to evaluate the effects of different light colors on growth, pigment composition, and photosynthetic performance of Arthrospira platensis. Results showed that under orange light the biomass productivity increased due to the capability of A. platensis to fully absorb this portion of the light spectrum. Under blue light, phycocyanin increased continuously up to 13.2% ± 1.96 of dry weight at day 5, while under orange and white lights the phycocyanin content resulted lower, 7.1 ± 0.39 and 6.7% ± 1.58 of dry weight, respectively. Chlorophyll fluorescence measurements showed the maximum electron transport rate (rETRmax) in cells grown under orange light. The results of this study indicated that the orange light increased both growth and phycocyanin productivities, while blue light increased mostly the phycocyanin content, while biomass productivity was much lower. Further increase of phycocyanin content was observed shifting the light illuminating the cultures from orange to blue, attaining a raise in phycocyanin content from 8.6% to 12.5% of dry weight within 48 h from the start of the illumination with blue light. Within the same period of time no growth was observed indicating that the synthesis of phycocyanin can be decoupled from growth. This study provides useful physiological information regarding the effects of different light spectra on growth, phycocyanin, and photosynthetic performance, as a prerequisite to optimize the production of high value pigments from cultures of A. platensis.

Effects of blue, orange and white lights on growth, chlorophyll fluorescence, and phycocyanin production of Arthrospira platensis cultures

M. Milia;A. Angioni;P. Addis;G. Torzillo
2022-01-01

Abstract

The aim of this study was to evaluate the effects of different light colors on growth, pigment composition, and photosynthetic performance of Arthrospira platensis. Results showed that under orange light the biomass productivity increased due to the capability of A. platensis to fully absorb this portion of the light spectrum. Under blue light, phycocyanin increased continuously up to 13.2% ± 1.96 of dry weight at day 5, while under orange and white lights the phycocyanin content resulted lower, 7.1 ± 0.39 and 6.7% ± 1.58 of dry weight, respectively. Chlorophyll fluorescence measurements showed the maximum electron transport rate (rETRmax) in cells grown under orange light. The results of this study indicated that the orange light increased both growth and phycocyanin productivities, while blue light increased mostly the phycocyanin content, while biomass productivity was much lower. Further increase of phycocyanin content was observed shifting the light illuminating the cultures from orange to blue, attaining a raise in phycocyanin content from 8.6% to 12.5% of dry weight within 48 h from the start of the illumination with blue light. Within the same period of time no growth was observed indicating that the synthesis of phycocyanin can be decoupled from growth. This study provides useful physiological information regarding the effects of different light spectra on growth, phycocyanin, and photosynthetic performance, as a prerequisite to optimize the production of high value pigments from cultures of A. platensis.
2022
Light spectra
Cyanobacteria
Chlorophyll fluorescence
Phycocyanin
Arthrospira platensis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/323983
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 15
social impact