In the present study, canthaxanthin was produced by biofermentation from Dietzia natronolimnaea HS-1 (D. natronolimnaea) and was loaded in phospholipid vesicles prepared with natural component using an easy and low dissipative method. Indeed, glycerosomes, hyalurosomes, and glycerohyalurosomes were prepared by direct hydration of both phosphatidylcholine and the biotechnological canthaxanthin, avoiding the use of organic solvents. Vesicles were sized from 63 nm to 87 nm and highly negatively charged. They entrapped a high number of the biomolecules and were stable on storage. Canthaxanthin-loaded vesicles incubated with fibroblasts did not affect their viability, proving to be highly biocompatible and capable of inhibiting the death of fibroblasts stressed with hydrogen peroxide. They reduced the nitric oxide expression in macrophages treated with lipopolysaccharides. Moreover, they favoured the cell migration in an in vitro lesion model. Results confirmed the health-promoting potential of canthaxanthin in skin cells, which is potentiated by its suitable loading in phospholipid vesicles, thus suggesting the possible use of these natural bioformulations in both skin protection and regeneration, thanks to the potent antioxidant, anti-inflammatory and antiageing effects of canthaxanthin.

Canthaxanthin Biofabrication, Loading in Green Phospholipid Vesicles and Evaluation of In Vitro Protection of Cells and Promotion of Their Monolayer Regeneration

Castangia I.
Primo
;
Manca M. L.
;
Allaw M.;Manconi M.
Ultimo
2022-01-01

Abstract

In the present study, canthaxanthin was produced by biofermentation from Dietzia natronolimnaea HS-1 (D. natronolimnaea) and was loaded in phospholipid vesicles prepared with natural component using an easy and low dissipative method. Indeed, glycerosomes, hyalurosomes, and glycerohyalurosomes were prepared by direct hydration of both phosphatidylcholine and the biotechnological canthaxanthin, avoiding the use of organic solvents. Vesicles were sized from 63 nm to 87 nm and highly negatively charged. They entrapped a high number of the biomolecules and were stable on storage. Canthaxanthin-loaded vesicles incubated with fibroblasts did not affect their viability, proving to be highly biocompatible and capable of inhibiting the death of fibroblasts stressed with hydrogen peroxide. They reduced the nitric oxide expression in macrophages treated with lipopolysaccharides. Moreover, they favoured the cell migration in an in vitro lesion model. Results confirmed the health-promoting potential of canthaxanthin in skin cells, which is potentiated by its suitable loading in phospholipid vesicles, thus suggesting the possible use of these natural bioformulations in both skin protection and regeneration, thanks to the potent antioxidant, anti-inflammatory and antiageing effects of canthaxanthin.
2022
Canthaxanthin; Dietzia natronolimnaea HS-1; Fibroblasts; Griess reagent; Hydrogen peroxide; Macrophages; Skin delivery
File in questo prodotto:
File Dimensione Formato  
Canthaxanthin Biofabrication, Loading in Green Phospholipid vesicles and evaluation of in vitro protection of cells and promotion of their monolayer regeneration.pdf

accesso aperto

Tipologia: versione editoriale
Dimensione 746.11 kB
Formato Adobe PDF
746.11 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/327621
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact