The biochemical class of the polymethoxylated flavonoids represents uncommon phenolic compounds in plants presenting a more marked lipophilic behavior due to the alkylation of its hydroxylic groups. As a polymethoxylated flavone, which concerns a different bioavailability, artemetin (ART) has been examined in vitro against lipid oxidation and its impact on cancer cells has been explored. Despite this flavone only exerted a slight protection against in vitro fatty acid and cholesterol oxidative degradation, ART significantly reduced viability and modulated lipid profile in cancer Hela cells at the dose range 10–50 μM after 72 h of incubation. It induced marked changes in the monounsaturated/saturated phospholipid class, significant decreased the levels of palmitic, oleic and palmitoleic acids, maybe involving an inhibitory effect on de novo lipogenesis and desaturation in cancer cells. Moreover, ART compromised normal mitochondrial function, inducing a noteworthy mitochondrial membrane polarization in cancer cells. A dose-dependent absorption of ART was evidenced in HeLa cell pellets (15.2% of the applied amount at 50 μM), coupled to a marked increase in membrane fluidity, as indicate by the dose-dependent fluorescent Nile Red staining (red emissions). Our results validate the ART role as modulatory agent on cancer cell physiology, especially impacting viability, lipid metabolism, cell fluidity, and mitochondrial potential.

Effect of the natural polymethoxylated flavone artemetin on lipid oxidation and its impact on cancer cell viability and lipids

Antonella Rosa
Primo
;
Raffaella Isola
Secondo
;
Mariella Nieddu
Ultimo
2022-01-01

Abstract

The biochemical class of the polymethoxylated flavonoids represents uncommon phenolic compounds in plants presenting a more marked lipophilic behavior due to the alkylation of its hydroxylic groups. As a polymethoxylated flavone, which concerns a different bioavailability, artemetin (ART) has been examined in vitro against lipid oxidation and its impact on cancer cells has been explored. Despite this flavone only exerted a slight protection against in vitro fatty acid and cholesterol oxidative degradation, ART significantly reduced viability and modulated lipid profile in cancer Hela cells at the dose range 10–50 μM after 72 h of incubation. It induced marked changes in the monounsaturated/saturated phospholipid class, significant decreased the levels of palmitic, oleic and palmitoleic acids, maybe involving an inhibitory effect on de novo lipogenesis and desaturation in cancer cells. Moreover, ART compromised normal mitochondrial function, inducing a noteworthy mitochondrial membrane polarization in cancer cells. A dose-dependent absorption of ART was evidenced in HeLa cell pellets (15.2% of the applied amount at 50 μM), coupled to a marked increase in membrane fluidity, as indicate by the dose-dependent fluorescent Nile Red staining (red emissions). Our results validate the ART role as modulatory agent on cancer cell physiology, especially impacting viability, lipid metabolism, cell fluidity, and mitochondrial potential.
2022
Flavonoids; Lipid peroxidation; Cytotoxicity; Lipid profile modulation; Fluidity
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0367326X2100277X-main pre-proof.pdf

accesso aperto

Descrizione: Versione accettata
Tipologia: versione post-print (AAM)
Dimensione 2.03 MB
Formato Adobe PDF
2.03 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/330490
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact