Rheological measurements and FTIR spectroscopy were used to characterize different doughs, obtained by commercial and monovarietal durum wheat flours (Cappelli and Karalis). Rheological frequency sweep tests were carried out, and the Weak Gel model, whose parameters may be related to gluten network extension and strength, was applied. IR analysis mainly focused on the Amide III band, revealing significant variations in the gluten network. Compared to the other varieties, Karalis semolina showed a higher amount of α-helices and a lower amount of β-sheets and random structures. Spectroscopic and rheological data were then correlated using Partial Least Squares regression (PLS) coupled with the Variable Importance in Projection (VIP) technique. The combined use of the techniques provided useful insights into the interplay among protein structures, gluten network features, and rheological properties. In detail, β-sheets and α-helices protein conformations were shown to significantly affect the gluten network's mechanical strength.
A Chemometric Approach to Assess the Rheological Properties of Durum Wheat Dough by Indirect FTIR Measurements
Fanari F.Investigation
;Desogus F.Investigation
;Grosso M.
Conceptualization
;Wilhelm M.Supervision
2022-01-01
Abstract
Rheological measurements and FTIR spectroscopy were used to characterize different doughs, obtained by commercial and monovarietal durum wheat flours (Cappelli and Karalis). Rheological frequency sweep tests were carried out, and the Weak Gel model, whose parameters may be related to gluten network extension and strength, was applied. IR analysis mainly focused on the Amide III band, revealing significant variations in the gluten network. Compared to the other varieties, Karalis semolina showed a higher amount of α-helices and a lower amount of β-sheets and random structures. Spectroscopic and rheological data were then correlated using Partial Least Squares regression (PLS) coupled with the Variable Importance in Projection (VIP) technique. The combined use of the techniques provided useful insights into the interplay among protein structures, gluten network features, and rheological properties. In detail, β-sheets and α-helices protein conformations were shown to significantly affect the gluten network's mechanical strength.File | Dimensione | Formato | |
---|---|---|---|
Fanari2022_Article_AChemometricApproachToAssessTh-2.pdf
accesso aperto
Descrizione: articolo online
Tipologia:
versione editoriale (VoR)
Dimensione
2.78 MB
Formato
Adobe PDF
|
2.78 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.