In this paper we consider nonnegative solutions of the following parabolic-elliptic cross-diffusion system [Formula presented] in Ω×(0,∞), with Ω a ball in RN, N≥3 under homogeneous Neumann boundary conditions and f(ξ)=(1+ξ)−α, [Formula presented], which describes gradient-dependent limitation of cross diffusion fluxes. Under conditions on f and initial data, we prove that a solution which blows up in finite time in L∞-norm, blows up also in Lp-norm for some p>1. Moreover, a lower bound of blow-up time is derived.

Blow-up phenomena for a chemotaxis system with flux limitation

Marras M.
;
Vernier-Piro S.;
2022-01-01

Abstract

In this paper we consider nonnegative solutions of the following parabolic-elliptic cross-diffusion system [Formula presented] in Ω×(0,∞), with Ω a ball in RN, N≥3 under homogeneous Neumann boundary conditions and f(ξ)=(1+ξ)−α, [Formula presented], which describes gradient-dependent limitation of cross diffusion fluxes. Under conditions on f and initial data, we prove that a solution which blows up in finite time in L∞-norm, blows up also in Lp-norm for some p>1. Moreover, a lower bound of blow-up time is derived.
2022
Chemotaxis; Finite-time blow-up
File in questo prodotto:
File Dimensione Formato  
Marras_Vernier_Yokota_2022.pdf

Solo gestori archivio

Descrizione: Articolo principale
Tipologia: versione editoriale (VoR)
Dimensione 369.31 kB
Formato Adobe PDF
369.31 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/344237
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact