Background: Immune tolerance, immune escape, neoangiogenesis, phenotypic changes, and glioma stem cells are all responsible for the resistance of malignant brain tumors to current therapies and persistent recurrence. The present study provides a panoramic view of innovative therapies for malignant brain tumors, especially glioblastoma, aimed at achieving a tailored approach. Methods: PubMed/Medline and ClinicalTri-als.gov were the main sources of an extensive literature review in which “Regenerative Medicine,” “Cell-Based Therapy,” “Chemotherapy,” “Vaccine,” “Cell Engineering,” “Immunotherapy, Active,” “Immunotherapy, Adoptive,” “Stem Cells,” “Gene Therapy,” “Target Therapy,” “Brain Cancer,” “Glioblastoma,” and “Malignant Brain Tumor” were the search terms. Only articles in English published in the last 5 years were included. A further selection was made according to the quality of the studies and level of evidence. Results: Cell-based and targeted therapies represent the newest frontiers of brain cancer treatment. Active and adoptive im-munotherapies, stem cell therapies, and gene therapies represent a tremendous evolution in recent years due to many preclinical and clinical studies. Clinical trials have validated the effectiveness of antibody-based immunotherapies, including an in-depth study of bevacizumab, in combination with standard of care. Pre-clinical data highlights the role of vaccines, stem cells, and gene therapies to prevent recurrence. Conclusion: Monoclonal antibodies strengthen the first-line therapy for high grade gliomas. Vaccines, engineered cells, stem cells, and gene and targeted therapies are good candidates for second-line treatment of both newly diagnosed and recurrent gliomas. Further data are necessary to validate this tailored approach at the bedside. (www.actabiomedica.it).

Innovative therapies for malignant brain tumors: the road to a tailored cure

Savasta S.
Methodology
;
2020-01-01

Abstract

Background: Immune tolerance, immune escape, neoangiogenesis, phenotypic changes, and glioma stem cells are all responsible for the resistance of malignant brain tumors to current therapies and persistent recurrence. The present study provides a panoramic view of innovative therapies for malignant brain tumors, especially glioblastoma, aimed at achieving a tailored approach. Methods: PubMed/Medline and ClinicalTri-als.gov were the main sources of an extensive literature review in which “Regenerative Medicine,” “Cell-Based Therapy,” “Chemotherapy,” “Vaccine,” “Cell Engineering,” “Immunotherapy, Active,” “Immunotherapy, Adoptive,” “Stem Cells,” “Gene Therapy,” “Target Therapy,” “Brain Cancer,” “Glioblastoma,” and “Malignant Brain Tumor” were the search terms. Only articles in English published in the last 5 years were included. A further selection was made according to the quality of the studies and level of evidence. Results: Cell-based and targeted therapies represent the newest frontiers of brain cancer treatment. Active and adoptive im-munotherapies, stem cell therapies, and gene therapies represent a tremendous evolution in recent years due to many preclinical and clinical studies. Clinical trials have validated the effectiveness of antibody-based immunotherapies, including an in-depth study of bevacizumab, in combination with standard of care. Pre-clinical data highlights the role of vaccines, stem cells, and gene therapies to prevent recurrence. Conclusion: Monoclonal antibodies strengthen the first-line therapy for high grade gliomas. Vaccines, engineered cells, stem cells, and gene and targeted therapies are good candidates for second-line treatment of both newly diagnosed and recurrent gliomas. Further data are necessary to validate this tailored approach at the bedside. (www.actabiomedica.it).
2020
Cell-based Therapy; Glioblastoma; Immunotherapy Malignant Brain Tumor; Target Therapy
File in questo prodotto:
File Dimensione Formato  
9951-PDF-52315-3-10-20200630.pdf

accesso aperto

Tipologia: versione editoriale (VoR)
Dimensione 344.29 kB
Formato Adobe PDF
344.29 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/344612
Citazioni
  • ???jsp.display-item.citation.pmc??? 23
  • Scopus 31
  • ???jsp.display-item.citation.isi??? ND
social impact