So far, the studies regarding the innovative High-Entropy Borides (HEBs), which belong to the more general class of Ultra-high temperature ceramics (UHTCs), have been entirely confined to their fabrication or characterization from the microstructural, mechanical and oxidation resistance viewpoints. In this work, the optical properties of two members of HEBs, i.e. (Hf0.2Zr0.2Ta0.2Mo0.2Ti0.2)B2 and (Hf0.2Nb0.2Ta0.2Mo0.2Ti0.2)B2, are evaluated for the first time to assess their possible utilization in the thermal solar energy field. The bulk samples (96.5 % and 97.4 % dense, respectively) are obtained as single-phase products by Spark Plasma Sintering (1950 °C/20 min/20 MPa) starting from powders previously synthesized by Self-propagating High-temperature Synthesis (SHS). The optical characterization, whose results are discussed by comparing HEBs to the individual borides, shows that they are characterized by intrinsic spectral selectivity and low thermal emittance, resulting therefore interesting for high-temperature solar absorbers applications.
Optical properties of bulk high-entropy diborides for solar energy applications
Barbarossa S.Primo
;Orru' Roberto
Secondo
;Cao G.;
2023-01-01
Abstract
So far, the studies regarding the innovative High-Entropy Borides (HEBs), which belong to the more general class of Ultra-high temperature ceramics (UHTCs), have been entirely confined to their fabrication or characterization from the microstructural, mechanical and oxidation resistance viewpoints. In this work, the optical properties of two members of HEBs, i.e. (Hf0.2Zr0.2Ta0.2Mo0.2Ti0.2)B2 and (Hf0.2Nb0.2Ta0.2Mo0.2Ti0.2)B2, are evaluated for the first time to assess their possible utilization in the thermal solar energy field. The bulk samples (96.5 % and 97.4 % dense, respectively) are obtained as single-phase products by Spark Plasma Sintering (1950 °C/20 min/20 MPa) starting from powders previously synthesized by Self-propagating High-temperature Synthesis (SHS). The optical characterization, whose results are discussed by comparing HEBs to the individual borides, shows that they are characterized by intrinsic spectral selectivity and low thermal emittance, resulting therefore interesting for high-temperature solar absorbers applications.File | Dimensione | Formato | |
---|---|---|---|
Submitted_paper_Barbarossa_et_al_HEB-solar_JALCOM.pdf
accesso aperto
Tipologia:
versione pre-print
Dimensione
903.98 kB
Formato
Adobe PDF
|
903.98 kB | Adobe PDF | Visualizza/Apri |
Barbarossa_et_al_JALCOM_2023.pdf
Solo gestori archivio
Tipologia:
versione editoriale (VoR)
Dimensione
5.33 MB
Formato
Adobe PDF
|
5.33 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.