This letter provides a computationally tractable necessary and sufficient condition for the existence of an average state observer for large-scale linear time-invariant (LTI) systems. Two design procedures, each with its own significance, are proposed. When the necessary and sufficient condition is not satisfied, a methodology is devised to obtain an optimal asymptotic estimate of the average state. In particular, the estimation problem is addressed by aggregating the unmeasured states of the original system and obtaining a projected system of reduced dimension. This approach reduces the complexity of the estimation task and yields an observer of dimension one. Moreover, it turns out that the dimension of the system also does not affect the upper bound on the estimation error.
Scale-Free Estimation of the Average State in Large-Scale Systems
Diego DeplanoSecondo
;
2020-01-01
Abstract
This letter provides a computationally tractable necessary and sufficient condition for the existence of an average state observer for large-scale linear time-invariant (LTI) systems. Two design procedures, each with its own significance, are proposed. When the necessary and sufficient condition is not satisfied, a methodology is devised to obtain an optimal asymptotic estimate of the average state. In particular, the estimation problem is addressed by aggregating the unmeasured states of the original system and obtaining a projected system of reduced dimension. This approach reduces the complexity of the estimation task and yields an observer of dimension one. Moreover, it turns out that the dimension of the system also does not affect the upper bound on the estimation error.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.