We consider a Dirichlet problem for a nonlinear, nonlocal equation driven by the degenerate fractional 𝑝-Laplacian, with a logistic-type reaction depending on a positive parameter. In the subdiffusive and equidiffusive cases, we prove existence and uniqueness of the positive solution when the parameter lies in con- venient intervals. In the superdiffusive case, we establish a bifurcation result. A new strong comparison result, of independent interest, plays a crucial role in the proof of such bifurcation result.

On the logistic equation for the fractional p-Laplacian

Iannizzotto A.
;
2023-01-01

Abstract

We consider a Dirichlet problem for a nonlinear, nonlocal equation driven by the degenerate fractional 𝑝-Laplacian, with a logistic-type reaction depending on a positive parameter. In the subdiffusive and equidiffusive cases, we prove existence and uniqueness of the positive solution when the parameter lies in con- venient intervals. In the superdiffusive case, we establish a bifurcation result. A new strong comparison result, of independent interest, plays a crucial role in the proof of such bifurcation result.
2023
Bifurcation; Comparison principle; Fractional ��-Laplacian; Logistic equation
File in questo prodotto:
File Dimensione Formato  
Iannizzotto-Mosconi-Papageorgiou MN.pdf

accesso aperto

Tipologia: versione editoriale
Dimensione 263.62 kB
Formato Adobe PDF
263.62 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/354404
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact