In this paper, we introduce the concept of a (lattice) skew Hilbert algebra as a natural generalization of Hilbert algebras. This notion allows a unified treatment of several structures of prominent importance for mathematical logic, e.g. (generalized) orthomodular lattices, and MV-algebras, which admit a natural notion of implication. In fact, it turns out that skew Hilbert algebras play a similar role for (strongly) sectionally pseudocomplemented posets as Hilbert algebras do for relatively pseudocomplemented ones. We will discuss basic properties of closed, dense and weakly dense elements of skew Hilbert algebras and their applications, and we will provide some basic results on their structure theory.
An algebraic analysis of implication in non-distributive logics
Chajda I.;Fazio D;Ledda A.;
2023-01-01
Abstract
In this paper, we introduce the concept of a (lattice) skew Hilbert algebra as a natural generalization of Hilbert algebras. This notion allows a unified treatment of several structures of prominent importance for mathematical logic, e.g. (generalized) orthomodular lattices, and MV-algebras, which admit a natural notion of implication. In fact, it turns out that skew Hilbert algebras play a similar role for (strongly) sectionally pseudocomplemented posets as Hilbert algebras do for relatively pseudocomplemented ones. We will discuss basic properties of closed, dense and weakly dense elements of skew Hilbert algebras and their applications, and we will provide some basic results on their structure theory.File | Dimensione | Formato | |
---|---|---|---|
an algebraic analysis of implication in non-distributive logics .pdf
Open Access dal 01/02/2024
Tipologia:
versione post-print (AAM)
Dimensione
1.66 MB
Formato
Adobe PDF
|
1.66 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.