Based on combined electrical analysis, microscopy investigation, and two-dimensional simulations we investigate the influence of V-pits on the turn-on voltage and current-voltage characteristics of high periodicity InGaN-GaN multiple quantum wells solar cells. Experimental measurements indicate that the sample with the thinnest p-GaN layer presents an early turn-on, which is not present for thicker p-GaN layers. Through technology computer aided design (TCAD) simulations, we show that the early turn-on is due to the insufficient V-pit planarization, as demonstrated by scanning electron microscopy and transmission electron microscopy analysis. V-pits penetrate the junctions, and locally put the quantum well region in closer connection with the p-side contact. The results provide insight on the role of V-pits on the electrical performance of high-periodicity quantum well devices, and demonstrate the existence of a trade-off between the need of a thin p-GaN (to limit short-wavelength absorption) and a thicker p-GaN, to favor V-pit planarization.

Influence of V-Pits on the Turn-On Voltage of GaN-Based High Periodicity Multiple Quantum Well Solar Cells

Mura G.;
2023-01-01

Abstract

Based on combined electrical analysis, microscopy investigation, and two-dimensional simulations we investigate the influence of V-pits on the turn-on voltage and current-voltage characteristics of high periodicity InGaN-GaN multiple quantum wells solar cells. Experimental measurements indicate that the sample with the thinnest p-GaN layer presents an early turn-on, which is not present for thicker p-GaN layers. Through technology computer aided design (TCAD) simulations, we show that the early turn-on is due to the insufficient V-pit planarization, as demonstrated by scanning electron microscopy and transmission electron microscopy analysis. V-pits penetrate the junctions, and locally put the quantum well region in closer connection with the p-side contact. The results provide insight on the role of V-pits on the electrical performance of high-periodicity quantum well devices, and demonstrate the existence of a trade-off between the need of a thin p-GaN (to limit short-wavelength absorption) and a thicker p-GaN, to favor V-pit planarization.
2023
Voltage; Quantum well devices; Scanning electron microscopy; Transmission electron microscopy; Silicon; Photovoltaic cells; Indium tin oxide; Experimental; GaN; InGaN; Modeling; Multiple-quantum-well; Solar cells; V-pits
File in questo prodotto:
File Dimensione Formato  
Influence_of_V-Pits_on_the_Turn-On_Voltage_of_GaN-Based_High_Periodicity_Multiple_Quantum_Well_Solar_Cells.pdf

accesso aperto

Tipologia: versione editoriale (VoR)
Dimensione 2.56 MB
Formato Adobe PDF
2.56 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/388083
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact